Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(29): e202400401, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488227

RESUMO

Although second near-infrared (NIR-II, 1000-1500 nm) light has attracted considerable attention, especially for life sciences applications, the development of organic dyes with NIR-II absorption remains a formidable challenge. Herein we report the design, synthesis, and electronic properties of 20π-electron antiaromatic benziphthalocyanines (BPcs) that exhibit intense absorption bands in the NIR region. The strong, low-energy absorption of the antiaromatic BPcs is attributed to electric-dipole-allowed HOMO-LUMO transitions with narrow band gaps, enabled by the reduced structural symmetry of BPc compared with regular porphyrins and phthalocyanines. The combination of peripheral substituents and a central metal decreases the HOMO-LUMO energy gaps, leading to the extension of the absorption bands into the NIR-II region (reaching 1100 nm) under reductive conditions.

2.
Angew Chem Int Ed Engl ; 62(11): e202218358, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36670047

RESUMO

Activatable near-infrared (NIR) dyes responsive to external stimuli are used in medical and other applications. Here, we describe the design and synthesis of bench-stable 18π- and 20π-electron benzitetraazaporphyrins (BzTAPs) possessing redox-switchable NIR properties. X-Ray, NMR, and UV/Visible-NIR analyses revealed that 20π-electron BzTAP 1 exhibits NIR absorption and antiaromaticity with a paratropic ring-current, while 18π-electron BzTAP 2 shows weakly aromatic character with NIR inertness. Notably, the NIR-silent BzTAP 2 was readily converted to the NIR-active BzTAP 1 in the presence of mild reducing agents such as amine. The intense NIR absorption band of BzTAP 1 is in sharp contrast to the very weak absorption bands of previously reported antiaromatic porphyrinoids. Molecular orbital analysis revealed that symmetry-lowering perturbation of the 20π-electron porphyrinoid skeleton enables the HOMO-LUMO transition of 1 to be electric-dipole-allowed. BzTAPs are expected to be useful for constructing activatable NIR probes working in reductive environments.

3.
Chemistry ; 23(34): 8309-8314, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28378358

RESUMO

Heteroaromatic N-oxides such as pyridine and quinoline N-oxides are well studied in organic chemistry, and N-oxide formation has long been utilized for tuning the reactivities of heteroaromatics. However, the scope of aromatic N-oxidation is still restricted to relatively small azine or azole skeletons, and there has been little investigation of the photophysical/chemical effects of N-oxidation on larger heteroaromatic systems. Here, the synthesis and unique properties of new macrocyclic heteroaromatic N-oxides, tetraazaporphyrin (TAP) meso-N-oxides, are reported. N-Oxidation of TAP reduced the 18π-aromaticity of the TAP ring compared with that of the parent TAP owing to the cross-conjugated resonance structure. The optical properties of TAPs were significantly changed by N-oxidation: the N-oxides did not exhibit azaporphyrin-like but instead porphyrin-like optical properties, that is, weak Q absorption bands, strong Soret absorption bands, and weak fluorescence. These features can be explained by the near-degenerate frontier molecular orbitals resulting from N-oxide formation. Singlet oxygen quantum yields were greatly increased to almost quantitative levels by N-oxidation. The N-oxides showed near-IR-responsive photoredox properties and were suitable as both oxidants and sensitizers for oxidation reactions. Protonation of the N-oxides restored TAP-like intense Q bands and red fluorescence, offering a potential design strategy for fluorescence switches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA