Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Org Chem ; 89(17): 12240-12248, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39121369

RESUMO

Procyanidins, found widely in foods and beverages, are prone to oxidation, yet the chemical structures of their oxidation products and the mechanisms involved remain unclear. Herein, we report that the conformation of procyanidin B4 influences its oxidation products and their stereochemistry. Eight spirocyclized oxidation products were obtained from procyanidin B4 and classified as S- or R-forms based on the configuration of the spiro carbons. The ratios of S- and R-forms derived from the compact and extended rotamers of procyanidin B4, respectively, varied with the solvent. DFT calculations suggested that the four lowest-energy conformers of procyanidin B4 are diverged by interflavan bond rotation and heterocyclic ring inversion. Conformations with an axial-oriented B-ring were estimated as reactive conformations showing proximity between reaction sites on the B- and D-rings. Moreover, the extended rotamer bearing the axially oriented B-ring showed greater stabilization by noncovalent interactions (NCIs), such as OH-π interactions, compared to the counterpart of the compact rotamer. This NCI-based stabilization accounts for a higher production of the R-form despite the predominant presence of the compact rotamer in H2O. These findings highlight the conformational effects that bias the stereoselectivity of oxidative spirocyclization in procyanidin B4, advancing our understanding of procyanidin oxidation mechanisms and product stereochemistry.

2.
Int J Food Sci Nutr ; 74(4): 463-475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332106

RESUMO

Taxifolin (dihydroquercetin), which has various pharmacological functions, is contained in edible plants. Some taxifolin-containing foodstuffs such as adzuki bean and sorghum seeds are cooked by themselves and with other starch-containing ingredients. In this study, non-glutinous rice flour (joshin-ko) and potato starch were heated with taxifolin. The heating resulted in the slowdown of pancreatin-induced hydrolysis of suspendable starch in joshin-ko and soluble starch in potato starch. The products of taxifolin formed by the heating such as quercetin were combined with starch during the heating and/or retrogradation, which was converted into the suspendable starch in joshin-ko and the soluble starch in the potato. Taking the difference in protein content and amylose chain length between joshin-ko and potato starch into account, the slowdown is discussed to be due to the binding of the reaction products of taxifolin to proteins in suspendable starch in joshin-ko and to soluble amylose in potato starch.


Assuntos
Oryza , Solanum tuberosum , Amido/química , Amilose , Quercetina , Hidrólise , Farinha , Oryza/metabolismo
3.
Microb Cell Fact ; 21(1): 33, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255900

RESUMO

BACKGROUND: Bifidobacteria are gram-positive, probiotic, and generally regarded as safe bacteria. Techniques such as transformation, gene knockout, and heterologous gene expression have been established for Bifidobacterium, indicating that this bacterium can be used as a cell factory platform. However, there are limited previous reports in this field, likely because of factors such as the highly anaerobic nature of this bacterium. Bifidobacterium adolescentis is among the most oxygen-sensitive Bifidobacterium species. It shows strain-specific gamma-aminobutyric acid (GABA) production. GABA is a potent bioactive compound with numerous physiological and psychological functions. In this study, we investigated whether B. adolesentis could be used for mass production of GABA. RESULTS: The B. adolescentis 4-2 strain isolated from a healthy adult human produced approximately 14 mM GABA. It carried gadB and gadC, which encode glutamate decarboxylase and glutamate GABA antiporter, respectively. We constructed pKKT427::Pori-gadBC and pKKT427::Pgap-gadBC plasmids carrying gadBC driven by the original gadB (ori) and gap promoters, respectively. Recombinants of Bifidobacterium were then constructed. Two recombinants with high production abilities, monitored by two different promoters, were investigated. GABA production was improved by adjusting the fermentation parameters, including the substrate concentration, initial culture pH, and co-factor supplementation, using response surface methodology. The optimum initial cultivation pH varied when the promoter region was changed. The ori promoter was induced under acidic conditions (pH 5.2:4.4), whereas the constitutive gap promoter showed enhanced GABA production at pH 6.0. Fed-batch fermentation was used to validate the optimum fermentation parameters, in which approximately 415 mM GABA was produced. The conversion ratio of glutamate to GABA was 92-100%. CONCLUSION: We report high GABA production in recombinant B. adolescentis. This study provides a foundation for using Bifidobacterium as a cell factory platform for industrial production of GABA.


Assuntos
Bifidobacterium adolescentis , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Ácido gama-Aminobutírico
4.
J Org Chem ; 85(19): 12359-12366, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32882140

RESUMO

Catechins are found in many foods, including tea. These compounds are bioactive. Previous studies have shown that catechins form dimers on oxidation, and there seem to be distinct regioselective effects. However, the dimerization mechanism and regioselectivity are not well understood. Therefore, we investigated the oxidation of four pyrogallol-type model compounds of epigallocatechin (EGC) having various substituents with 1 equiv of copper chloride and 30% dioxane in water. Compounds having 2C-2C or 2C-4C bonds in the B-ring were obtained in different product ratios. Comparison of the oxidation rates of each compound revealed that the model compounds having an oxygen atom corresponding to the 1-position of the C-ring of EGC underwent slow oxidation. In addition, using density functional theory calculations, we found that the highest occupied molecular orbital energies of these compounds were higher than those of the others. Further, the 2C-2C-bonded oxidation product having an A-ring and an oxygen atom at the C-ring 1-position was confirmed to have the highest thermodynamic stability. From these results, it is suggested that the regioselective condensation reaction of the catechin B-ring is related to interactions between the A-rings, as indicated by earlier studies, and the presence of oxygen at the 1-position of the C-ring in EGC.

5.
Biosci Biotechnol Biochem ; 84(3): 598-605, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31724491

RESUMO

Red kidney beans (Phaseolus vulgaris L.) contain bioactive compounds that are known to exhibit antidiabetic effects via inhibition of α-glucosidase. However, information on the nonpolar components that exhibit antidiabetic activity is limited. Here, we report the isolation and structure determination of components with α-glucosidase inhibitory activity, which were obtained from the hexane extract of red kidney beans. Triacylglycerols (TAGs) were identified as the major components exhibiting inhibitory activity against α-glucosidase. The chemical structure of TAGs was determined by a combination of GC-MS and UPLC-MS/MS. The primary TAGs identified were LnLnLn (trilinolenin) and LnLLn (1,3-dilinolenoyl-2-linoleoyl glycerol). The major fatty acids present in these TAGs were α-linolenic acid (ω-3) and linoleic acid (ω-6). These TAGs were also found to inhibit the α-glucosidase activity in a similar fashion as acarbose. These results suggest that TAGs have potency as antidiabetics and support the potential suitability of red kidney beans for diabetes treatment.


Assuntos
Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Hexanos/química , Phaseolus/química , Triglicerídeos/isolamento & purificação , Cromatografia Líquida/métodos , Diabetes Mellitus/tratamento farmacológico , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Estrutura Molecular , Espectrometria de Massas em Tandem , Triglicerídeos/química
6.
Molecules ; 25(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471071

RESUMO

Although the intake of jack bean (Canavalia ensiformis (L.) DC.), an underutilized tropical legume, can potentially decrease the risk of several chronic diseases, not much effort has been directed at profiling the polyphenolics contained therein. Hence, this work aimed to identify and quantify the dominant jack bean polyphenolics, which are believed to have antioxidant and other bioactivities. Four major compounds were detected and identified as kaempferol glycosides with three or four glycoside units. Their structures were established based on UV-visible, 1d, 2D NMR, and HR-ESI-MS analyses. Specifically, kaempferol 3-O-a-l-rhamnopyranosyl (1®6)- b-d-glucopyranosyl (1®2)-b-d-galactopyranosyl-7-O-[3-O-o-anisoyl]-a-l-rhamnopyranoside was detected for the first time, while the other three compounds have already been described in plants other than jack bean. This new compound was found to have a higher a-glucosidase inhibition activity compared to acarbose.


Assuntos
Canavalia/química , Glucosidases/antagonistas & inibidores , Glicosídeos/química , Flavonóis/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
7.
Biosci Biotechnol Biochem ; 80(11): 2077-2079, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27297025

RESUMO

High-performance liquid chromatography analysis is used to examine the distribution of isoflavones in different parts of soybean sprouts. Between the seed leaf and hypocotyl, the ratio of isoflavones differs depending on the aglycone type. Glycitein exists predominantly in the hypocotyl. Three compounds isolated from 4-day-old seed coats were identified as coumestrol and its glycosides.

8.
Molecules ; 21(3): 273, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927046

RESUMO

Following the oxidation of epicatechin (EC), three novel compounds and two known compounds were isolated. The chemical structures of these oxidation products were determined by mass spectrometry (MS) and various nuclear magnetic resonance (NMR) experiments, and the A-ring-B-ring linkage that is characteristic of catechin was found in each molecule. Three compounds showed similar ultraviolet-visible (UV-Vis) spectra to EC, whereas two compounds showed different spectral absorption in the region between 300 and 500 nm. A similar spectrum was obtained for the thearubigin fraction prepared from a black tea infusion. This result suggests that the condensation reaction between the A-ring and B-ring is more important than reaction between B-rings for thearubigin formation.


Assuntos
Catequina/análogos & derivados , Catequina/química , Polifenóis/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Polifenóis/química , Chá/química
9.
Bioorg Med Chem Lett ; 25(4): 749-52, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25619638

RESUMO

The synthesis of oolongtheanins (1a-d) was accomplished from EGC and/or EGCg in three steps. Oolongtheanin-3'-O-gallate (1b) showed more potent inhibitory activity on micellar cholesterol solubility than did EGCg.


Assuntos
Benzopiranos/química , Catequina/química , Colesterol/química , Polifenóis/química , Benzopiranos/síntese química , Camellia sinensis/química , Técnicas In Vitro , Micelas , Polifenóis/síntese química , Solubilidade
10.
3 Biotech ; 14(1): 28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173823

RESUMO

Passiflora edulis Var. flavicarpa (passion fruit) generates vast waste (60-70%) in the form of peel and seed after the juice extraction. The study aimed to isolate Scirpusin B (SB) from passion fruit (PF) seed waste collected from Northeast India and to analyse its anti-radical, antibacterial, anti-diabetic, and anti-oral cancer activities. Scirpusin B was isolated following hydro-alcoholic extraction, fractionation, and column chromatography. The isolated fraction was further identified through NMR and mass spectroscopy. SB exhibited significant antiradical activity against six standard antioxidant compounds, indicating its commercial application. SB inhibited α-amylase (IC50 Value: 76.38 ± 0.25 µg/mL) and α-glucosidase digestive enzymes (IC50 Value: 2.32 ± 0.04 µg/mL), signifying its antidiabetic properties. In addition, SB showed profound antibacterial activity against eight gram-positive and gram-negative bacteria reported for the first time. Furthermore, SB inhibited SAS and TTN oral cancer cell proliferation up to 95% and 83%, respectively. SB significantly inhibited colonies of SAS and TTn cells in the clonogenic assay, attributing to its anticancer properties. The PI-FACS assay confirmed the ability of SB (75 µM) to kill SAS and TTn cells by 40.26 and 44.3% in 72 h. The mechanism of SB inhibiting oral cancer cell proliferation was understood through western blot analysis, where SB significantly suppressed different cancer hallmark proteins, such as TNF-α, survivin, COX-2, cyclin D1, and VEGF-A. The present study suggests that SB isolated from PF seed can add noteworthy value to the waste biomass for various industrial and medical applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03876-6.

11.
Biosci Biotechnol Biochem ; 77(4): 877-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563552

RESUMO

Campesteryl ferulate (3a, 24R/α) and epi-campesteryl ferulate (3b, 24S/ß), components of rice bran γ-oryzanol, were isolated by the preparative recycle HPLC system using a combination of ODS silica and cholester packed columns at over 99% purity. Their purities and structures of 3a and 3b thus obtained were confirmed by HPLC analysis and physical data (1H- and 13C-NMR, MS spectra, and X-ray crystallography).


Assuntos
Fracionamento Químico , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Oryza/química , Fenilpropionatos/química , Espectroscopia de Ressonância Magnética , Estereoisomerismo
12.
Proc Natl Acad Sci U S A ; 107(16): 7275-80, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368460

RESUMO

Fluorescent bisretinoids, such as A2E and all-trans-retinal dimer, form as a by-product of vitamin A cycling in retina and accumulate in retinal pigment epithelial (RPE) cells as lipofuscin pigments. These pigments are implicated in pathological mechanisms involved in several vision-threatening diseases including age-related macular degeneration. Efforts to understand damaging events initiated by these bisretinoids have revealed that photoexcitation of A2E by wavelengths in the visible spectrum leads to singlet oxygen production and photooxidation of A2E. Here we have employed liquid chromatography coupled to electrospray ionization mass spectrometry together with tandem mass spectrometry (MS/MS), to demonstrate that A2E also undergoes photooxidation-induced degradation and we have elucidated the structures of some of the aldehyde-bearing cleavage products. Studies in which A2E was incubated with a singlet oxygen generator yielded results consistent with a mechanism involving bisretinoid photocleavage at sites of singlet molecular oxygen addition. We provide evidence that one of the products released by A2E photodegradation is methylglyoxal, a low molecular weight reactive dicarbonyl with the capacity to form advanced glycation end products. Methylglyoxal is already known to be generated by carbohydrate and lipid oxidation; this is the first report of its production via bisretinoid photocleavage. It is significant that AGE-modified proteins are detected in deposits (drusen) that accumulate below RPE cells in vivo; drusen have been linked to age-related macular degeneration pathogenesis. Whereas various processes play a role in drusen formation, these findings are indicative of a contribution from lipofuscin photooxidation in RPE.


Assuntos
Degeneração Macular/terapia , Compostos de Piridínio/química , Epitélio Pigmentado da Retina/citologia , Retinoides/química , Aldeídos/química , Carboidratos/química , Humanos , Luz , Lipídeos/química , Lipofuscina/química , Oxigênio/química , Fotoquímica/métodos , Aldeído Pirúvico/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Vitamina A/química
13.
PLoS One ; 18(5): e0286274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256897

RESUMO

Haritaki churna (HC), a single herb ayurvedic formulations is known to be prescribed for various gastro-intestinal disorders in Ayurveda. Haritaki churna aqueous extract (HCAE) has anti-cancer activity against different types of cancer cells with an IC50 in the range of 50-97 µg/ml. Bioavailability of Haritaki Churna is very high in digestive track and treatment of colorectal cancer cells HCT-116, DLD1, HT-29 with HCAE reduces its cellular viability with anti-cancer IC50 70µg/ml. HCAE consumption is safe for human as it didn't affect the cellular viability of primary human PBMCs or non-cancerogenic HEK-293 cells. Haritaki churna was found to be stable in biological gastric fluids and bioactive agents are not losing their anti-cancer activity under such harsh conditions. The HPLC Chromatogram of HCAE is giving 13 major peaks and 11 minor peaks. Exploiting LC-MS, IR and NMR spectroscopic techniques, a total of 13 compounds were identified from HCAE namely Shikimic acid, Chebulic acid, gallic acid, 5-hydroxymethylfurfural, Protocatechuic acid, 4-O-galloyl-shikimic Acid, 5-O-galloyl-shikimic Acid, Methylgallate, corilagin, 1, 2, 6, Tri-O-galloyl ß-D-glucose, chebulagic acid, chebulinic acid, and Ellagic acid. Reconstitution and subtraction of phytochemicals from the mixture indicate that Ellagic acid significantly contribute into anti-cancer effect of HCAE. Cancer cells treated with ellagic acid from HCAE were incapable of completing their cell-cycle and halted the cell-cycle at DNA synthesis S-Phase, as demonstrated by decreased cyclin A2 expression levels with increasing ellagic acid concentration. Halting of cells at S-phase causes induction of apoptosis in cancer cells. Cancer cells exhibiting DNA fragmentation, changes in expression of several apoptotic proteins such as Bcl2, cytochrome-c and formation of cleaved products of caspase 3 and PARP-1 suggests ellagic acid induces cell death via mitochondrial pathway of apoptosis.


Assuntos
Ácido Elágico , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácido Elágico/farmacologia , Células HEK293 , Ácido Chiquímico , Compostos Fitoquímicos/farmacologia
14.
Microbiome Res Rep ; 2(1): 4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045611

RESUMO

Aims: C16 monounsaturated fatty acid (C16:1) show antibacterial activity against Staphylococcus aureus, a pathogen associated with various diseases such as atopic dermatitis and bacteremia, while the compound does not exhibit antibacterial activity against Staphylococcus epidermidis, an epidermal commensal that inhibits the growth of S. aureus. In this study, we aimed to find bifidobacterial strains with the ability to produce C16:1 and to find a practical manner to utilize C16:1-producing strains in industry. Methods: Various Bifidobacterium strains were screened for their content of C16:1. The chemical identity of C16:1 produced by a selected strain was analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Medium components that affect the C16:1 content of the selected strain were investigated. Antibacterial activity against staphylococci was compared between the authentic C16:1 isomers and total fatty acids (TFA) extracted from the selected strain. Results: B. adolescentis 12451, B. adolescentis 12-111, B. boum JCM 1211, and Bifidobacterium sp. JCM 7042 showed high C16:1 content among the tested strains. TFA extracted from Bifidobacterium sp. JCM 7042 contained C16:1 at 2.3% as the fatty acid constituent (2.4 mg/L of broth). Through GC-MS and LC-MS analyses, the C16:1 synthesized by Bifidobacterium sp. JCM 7042 was identified as 7-cis-hexadecenoic acid (7-cis-C16:1). The authentic 7-cis-C16:1 showed strong and selective antibacterial activity against S. aureus, similar to 6-cis-C16:1, with a minimum inhibitory concentration (MIC) of < 10 µg/mL. Components that increase C16:1 productivity were not found in the MRS and TOS media; however, Tween 80 was shown to considerably reduce the C16:1 ratio in TFA. Antibacterial activity against S. aureus was observed when the TFA extracted from Bifidobacterium sp. JCM 7042 contained high level of 7-cis-C16:1 (6.1% in TFA) but not when it contained low level of 7-cis-C16:1 (0.1% in TFA). Conclusion: The fatty acid, 7-cis-C16:1, which can selectively inhibit the S. aureus growth, is accumulated in TFA of several bifidobacteria. The TFA extracted from cultured cells of Bifidobacterium sp. JCM 7042 demonstrated antibacterial activity. From a practical viewpoint, our findings are important for developing an efficient method to produce novel skin care cosmetics, functional dairy foods, and other commodities.

15.
Bioorg Med Chem Lett ; 22(1): 253-7, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22133629

RESUMO

A reliable and simple method for detecting nucleobase mutations is very important clinically because sequence variations in human DNA cause genetic diseases and genetically influenced traits. A majority of sequence variations are attributed to single nucleotide polymorphisms (SNPs). Here, we developed a method for SNP detection using DNA probes that contained a fluorescent tricyclic base-linked acyclonucleoside N. The type of nucleobases involved in the SNP sites in an RNA target could be determined using four DNA probes containing N. Further, we found that the SNP in the RNA target could be detected by a visible color. Thus, this system would provide a novel and simple method for detecting SNPs in an RNA target.


Assuntos
Sondas de Ácido Nucleico/genética , Nucleosídeos/farmacologia , Polimorfismo de Nucleotídeo Único , Hidrocarboneto de Aril Hidroxilases/genética , Pareamento Incorreto de Bases , Citocromo P-450 CYP2C9 , DNA/genética , Técnicas Genéticas , Variação Genética , Humanos , Modelos Químicos , Modelos Genéticos , Ácidos Nucleicos , Oligodesoxirribonucleotídeos/química , Espectrometria de Fluorescência/métodos
16.
Biosci Biotechnol Biochem ; 76(8): 1571-2, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22878196

RESUMO

A new type of flavonoid was isolated from an adzuki bean-water extract by various chromatographic techniques. The chemical structure was determined by ultraviolet-visible (UV-Vis) spectroscopy, mass spectrometry (MS), and various nuclear magnetic resonance (NMR) experiments, and it was found to be unique in that the xanthylium skeleton was present in this molecule.


Assuntos
Produtos Biológicos/isolamento & purificação , Fabaceae/química , Flavonoides/isolamento & purificação , Compostos Heterocíclicos com 3 Anéis/isolamento & purificação , Extratos Vegetais/química , Produtos Biológicos/química , Flavonoides/química , Compostos Heterocíclicos com 3 Anéis/química , Extração Líquido-Líquido , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria
17.
Food Res Int ; 160: 111731, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076419

RESUMO

During the processing of black tea, enzymatic oxidation converts tea catechins into a complex mixture of oxidative products, including theaflavins, and thearubigins. In this study, ultra-performance liquid chromatography was carried out to analyze the tea extracts collected after each processing stage to clarify the quantitative changes in these compounds during black tea processing. It was found that the catechin content was significantly reduced during processing, and in particular between the later rolling and fermentation periods. In contrast, the variation in the theaflavin content was negatively correlated with the catechin content. Twenty-three compounds containing the known catechins dimers and flavonol glycosides were identified by liquid chromatography-mass spectrometry (LC-MS). In addition, 45 components whose contents increased significantly between the late rolling and late fermentation stages were extracted using principal components analysis by LC-MS. It was considered that due to the catechin-like units present in these components, they likely contribute to thearubigin production during black tea processing.


Assuntos
Camellia sinensis , Catequina , Antioxidantes/análise , Camellia sinensis/química , Catequina/análise , Folhas de Planta/química , Polifenóis/análise , Chá/química
18.
Chem Biol Interact ; 364: 110052, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872046

RESUMO

Overuse of pyrrolidinophenones (PPs) is known to cause damage to vascular and central nervous systems, but little is known about its effect on brain endothelial barrier function. In this study, we found that exposure to 4'-iodo-α-pyrrolidinononanophenone (I-α-PNP), one of the most potently cytotoxic PPs, at sublethal concentrations decreases trans-endothelial electrical resistance and increases paracellular permeability across a monolayer of human brain microvascular endothelial cells. Treatment with I-α-PNP also elevated the production of superoxide anion. Furthermore, the treatment reduced the expression and plasma membrane localization of a tight junction protein claudin-5 (CLDN5), which was almost restored by pretreatment with an antioxidant N-acetyl-l-cysteine. These results indicate that I-α-PNP treatment may down-regulate the plasma membrane-localized CLDN5 by elevating the production of reactive oxygen species (ROS). The treatment with I-α-PNP increased the nuclear translocation of Forkhead box protein O1 (FoxO1), an oxidative stress-responsive transcription factor, and pretreating with a FoxO1 inhibitor ameliorated the decrease in CLDN5 mRNA. In addition, I-α-PNP treatment up-regulated the expression and secretion of matrix metalloproteinase-2 (MMP2) and MMP9, and the addition of an MMP inhibitor reversed the degradation of CLDN5 by I-α-PNP. Moreover, I-α-PNP treatment facilitated the activation of 26S proteasome-based proteolytic activity and pretreatment with an inhibitor of 26S proteasome, but not autophagy, suppressed the CLDN5 degradation by I-α-PNP. Accordingly, it is suggested that the down-regulation of CLDN5 by exposure to I-α-PNP is ascribable to suppression of the gene transcription due to FoxO1 nuclear translocation through ROS production and to acceleration both of the MMPs (MMP2 and MMP9)- and 26S proteasome-based proteolysis.


Assuntos
Células Endoteliais , Metaloproteinase 2 da Matriz , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Claudina-5/farmacologia , Humanos , Cetonas , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pirrolidinas , Espécies Reativas de Oxigênio/metabolismo
19.
J Agric Food Chem ; 70(8): 2695-2700, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167297

RESUMO

Kaempferol glycosides are functional components of jack bean. The chemical stability of kaempferol glycosides under simulated food processing conditions was evaluated in this study by subjecting the methanol extract and each compound to heat treatment. During the heat treatment, rearrangement of the anisoyl group on the rhamnose moiety of the kaempferol glycoside was observed, followed by hydrolysis upon long-term heat treatment. One of the two regioisomers produced under heating conditions showed higher α-glucosidase inhibitory activity than the dominant anisoyl kaempferol glycoside. This rearrangement reaction was also observed upon the heat treatment of methyl-3-O-anisoyl-rhamnose, with the rearrangement from the 3-position to the 2-position occurring preferentially. The approach adopted in this study can be used to design appropriate food processing conditions, which, in turn, will increase the functional value of foods.


Assuntos
Canavalia , Glicosídeos , Canavalia/química , Glicosídeos/química , Quempferóis/farmacologia , alfa-Glucosidases
20.
Toxicol Lett ; 355: 127-140, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863860

RESUMO

In this study, we newly synthesized four α-pyrrolidinononanophenone (α-PNP) derivatives [4'-halogenated derivatives and α-pyrrolidinodecanophenone (α-PDP)], and then performed the structure-cytotoxicity relationship analyses. The results showed the rank order for the cytotoxic effects, α-PNP < α-PDP < 4'-fluoro-α-PNP < 4'-chrolo-α-PNP < 4'-bromo-α-PNP < 4'-iodo-α-PNP (I-α-PNP), and suggest that cytotoxicities of 4'-halogenated derivatives were more intensive than that of elongation of the hydrocarbon chain (α-PDP). We also surveyed the apoptotic mechanism of I-α-PNP in brain microvascular endothelial (HBME) cells that are utilized as the in vitro model of the blood-brain barrier. HBME cell treatment with I-α-PNP facilitated the apoptotic events (caspase-3 activation, externalization of phosphatidylserine, and DNA fragmentation), which were almost completely abolished by pretreating with antioxidants. In addition, the immunofluorescent staining revealed the enhanced production of hydroxyl radical in mitochondria by the I-α-PNP treatment, inferring that the I-α-PNP treatment triggers the apoptotic mechanism dependent on the enhanced ROS production in mitochondria. The treatment with I-α-PNP increased the production of cytotoxic aldehyde 4-hydroxy-2-nonenal and decreased the amount of reduced glutathione. Additionally, the treatment decreased the 26S proteasome-based proteolytic activities and aggresome formation. These results suggest that decrease in the antioxidant properties is also ascribable to HBME cell apoptosis elicited by I-α-PNP.


Assuntos
Antioxidantes/farmacologia , Encéfalo/irrigação sanguínea , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cetonas/farmacologia , Pirrolidinas/farmacologia , Antioxidantes/química , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cetonas/síntese química , Estrutura Molecular , Pirrolidinas/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA