RESUMO
BACKGROUND: Endonucleases play a crucial role in plant growth and stress response by breaking down nuclear DNA. However, the specific members and biological functions of the endonuclease encoding genes in wheat remain to be determined. RESULTS: In this study, we identified a total of 26 TaENDO family genes at the wheat genome-wide level. These genes were located on chromosomes 2 A, 2B, 2D, 3 A, 3B, and 3D and classified into four groups, each sharing similar gene structures and conserved motifs. Furthermore, we identified diverse stress-response and growth-related cis-elements in the promoter of TaENDO genes, which were broadly expressed in different organs, and several TaENDO genes were significantly induced under drought and salt stresses. We further examined the biological function of TaENDO23 gene since it was rapidly induced under drought stress and exhibited high expression in spikes and grains. Subcellular localization analysis revealed that TaENDO23 was localized in the cytoplasm of wheat protoplasts. qRT-PCR results indicated that the expression of TaENDO23 increased under PEG6000 and abscisic acid treatments, but decreased under NaCl treatment. TaENDO23 mainly expressed in leaves and spikes. A kompetitive allele-specific PCR (KASP) marker was developed to identify single nucleotide polymorphisms in TaENDO23 gene in 256 wheat accessions. The alleles with TaENDO23-HapI haplotypes had higher grain weight and size compared to TaENDO23-HapII. The geographical and annual frequency distributions of the two TaENDO23 haplotypes revealed that the elite haplotype TaENDO23-HapI was positively selected in the wheat breeding process. CONCLUSION: We systematically analyzed the evolutionary relationships, gene structure characteristics, and expression patterns of TaENDO genes in wheat. The expression of TaENDO23, in particular, was induced under drought stress, mainly expressed in the leaves and grains. The KASP marker of TaENDO23 gene successfully distinguished between the wheat accessions, revealing TaENDO23-HapI as the elite haplotype associated with improved grain weight and size. These findings provide insights into the evolution and characteristics of TaENDO genes at the genome-wide level in wheat, laying the foundation for further biological analysis of TaENDO23 gene, especially in response to drought stress and grain development.
Assuntos
Secas , Estresse Fisiológico , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genoma de Planta , Filogenia , Cromossomos de Plantas/genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: γ-glutamylcyclotransferase (GGCT), an enzyme to maintain glutathione homeostasis, plays a vital role in the response to plant growth and development as well as the adaptation to various stresses. Although the GGCT gene family analysis has been conducted in Arabidopsis and rice, the family genes have not yet been well identified and analyzed at the genome-wide level in wheat (Triticum aestivum L.). RESULTS: In the present study, 20 TaGGCT genes were identified in the wheat genome and widely distributed on chromosomes 2A, 2B, 2D, 3A, 4A, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, and 7D. Phylogenetic and structural analyses showed that these TaGGCT genes could be classified into three subfamilies: ChaC, GGGACT, and GGCT-PS. They exhibited similar motif compositions and distribution patterns in the same subgroup. Gene duplication analysis suggested that the expansion of TaGGCT family genes was facilitated by segmental duplications and tandem repeats in the wheat evolutionary events. Identification of diverse cis-acting response elements in TaGGCT promoters indicated their potential fundamental roles in response to plant development and abiotic stresses. The analysis of transcriptome data combined with RT-qPCR results revealed that the TaGGCTs genes exhibited ubiquitous expression across plant organs, with highly expressed in roots, stems, and developing grains. Most TaGGCT genes were up-regulated after 6 h under 20% PEG6000 and ABA treatments. Association analysis revealed that two haplotypes of TaGGCT20 gene displayed significantly different Thousand-kernel weight (TKW), Kernel length (KL), and Kernel width (KW) in wheat. The geographical and annual distribution of the two haplotypes of TaGGCT20 gene further revealed that the frequency of the favorable haplotype TaGGCT20-Hap-I was positively selected in the historical breeding process of wheat. CONCLUSION: This study investigated the genome-wide identification, structure, evolution, and expression analysis of TaGGCT genes in wheat. The motifs of TaGGCTs were highly conserved throughout the evolutionary history of wheat. Most TaGGCT genes were highly expressed in roots, stems, and developing grains, and involved in the response to drought stresses. Two haplotypes were developed in the TaGGCT20 gene, where TaGGCT20-Hap-I, as a favorable haplotype, was significantly associated with higher TKW, KL, and KW in wheat, suggesting that the haplotype is used as a function marker for the selection in grain yield in wheat breeding.
Assuntos
Triticum , gama-Glutamilciclotransferase , gama-Glutamilciclotransferase/genética , Filogenia , Melhoramento Vegetal , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genéticaRESUMO
BACKGROUND: Ubiquitination is an important regulatory step of selective protein degradation in the plant UPS (ubiquitin-proteasome system), which is involved in various biological processes in eukaryotes. Ubiquitin-conjugating enzymes play an intermediate role in the process of protein ubiquitination reactions and thus play an essential role in regulating plant growth and response to adverse environmental conditions. However, a genome-wide analysis of the UBC gene family in wheat (Triticum aestivum L.) has not yet been performed. RESULTS: In this study, the number, physiochemical properties, gene structure, collinearity, and phylogenetic relationships of TaUBC family members in wheat were analyzed using bioinformatics methods. The expression pattern of TaUBC genes in different tissues/organs and developmental periods, as well as the transcript levels under abiotic stress treatment, were analyzed using RNA-Seq data and qRT-PCR. Meanwhile, favorable haplotypes of TaUBC25 were investigated based on wheat resequencing data of 681 wheat cultivars from the Wheat Union Database. The analyses identified a total of 93 TaUBC family members containing a UBC domain in wheat genome. These genes were unevenly distributed across 21 chromosomes, and numerous duplication events were observed between gene members. Based on phylogenetic analysis, the TaUBC family was divided into 13 E2 groups and a separate UEV group. We investigated the expression of TaUBC family genes under different tissue/organ and stress conditions by quantitative real-time PCR (qRT-PCR) analysis. The results showed that some TaUBC genes were specifically expressed in certain tissues/organs and that most TaUBC genes responded to NaCl, PEG6000, and ABA treatment with different levels of expression. In addition, we performed association analysis for the two haplotypes based on key agronomic traits such as thousand-kernel weight (TKW), kernel length (KL), kernel weight (KW), and kernel thickness (KT), examining 122 wheat accessions at three environmental sites. The results showed that TaUBC25-Hap II had significantly higher TKW, KL, KW, and KT than TaUBC25-Hap I. The distribution analysis of haplotypes showed that TaUBC25-Hap II was preferred in the natural population of wheat. CONCLUSION: Our results identified 93 members of the TaUBC family in wheat, and several genes involved in grain development and abiotic stress response. Based on the SNPs detected in the TaUBC sequence, two haplotypes, TaUBC25-Hap I and TaUBC25-Hap II, were identified among wheat cultivars, and their potential value for wheat breeding was validated by association analysis. The above results provide a theoretical basis for elucidating the evolutionary relationships of the TaUBC gene family and lay the foundation for studying the functions of family members in the future.
Assuntos
Família Multigênica , Filogenia , Triticum , Enzimas de Conjugação de Ubiquitina , Triticum/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Fisiológico/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Perfilação da Expressão GênicaRESUMO
We present a single-shot intensity diffraction tomography method via polarization-multiplexed LED illumination. Three LED elements covered with 0°, 45°, and 135° linear polarizers, respectively, are lit up simultaneously to illuminate the sample with illumination angles matching the numerical aperture of the objective. The scattering field of the sample is recorded on a single intensity image with a polarization sensor, and three intensity images corresponding to the three LED elements are decoupled from the intensity image by using a pre-calibrated intensity transform matrix. After a slice-wise deconvolution procedure, the 3D complex refractive index distribution of the sample can be recovered. To demonstrate the performance of our method, we perform experiments on a USAF absorption resolution target, rat hippocampal cell lines, and spongy spicule. These imaging results show that our method can achieve 3D tomography for various biomedical samples with a near incoherent diffraction-limited lateral resolution of 690â nm and an axial resolution of 4.68â µm.
RESUMO
BACKGROUND: Grain yield is a complex and polygenic trait influenced by the photosynthetic source-sink relationship in wheat. The top three leaves, especially the flag leaf, are considered the major sources of photo-assimilates accumulated in the grain. Determination of significant genomic regions and candidate genes affecting flag leaf size can be used in breeding for grain yield improvement. RESULTS: With the final purpose of understanding key genomic regions for flag leaf size, a meta-analysis of 521 initial quantitative trait loci (QTLs) from 31 independent QTL mapping studies over the past decades was performed, where 333 loci eventually were refined into 64 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs was 5.28 times less than that of the initial QTLs. Thirty-three MQTLs overlapped the marker trait associations (MTAs) previously reported in genome-wide association studies (GWAS) for flag leaf traits in wheat. A total of 2262 candidate genes for flag leaf size, which were involved in the peroxisome, basal transcription factor, and tyrosine metabolism pathways were identified in MQTL regions by the in silico transcriptome assessment. Of these, the expression analysis of the available genes revealed that 134 genes with > 2 transcripts per million (TPM) were highly and specifically expressed in the leaf. These candidate genes could be critical to affect flag leaf size in wheat. CONCLUSIONS: The findings will make further insight into the genetic determinants of flag leaf size and provide some reliable MQTLs and putative candidate genes for the genetic improvement of flag leaf size in wheat.
Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla , Transcriptoma , Melhoramento Vegetal , Folhas de Planta/genética , GenômicaRESUMO
Astragalus membranaceus (A. membranaceus), a well-known traditional herbal medicine, has been widely used in ailments for more than 2000 years. The main bioactive compounds including flavonoids, triterpene saponins and polysaccharides obtained from A. membranaceus have shown a wide range of biological activities and pharmacological effects. These bioactive compounds have a significant role in protecting the liver, immunomodulation, anticancer, antidiabetic, antiviral, antiinflammatory, antioxidant and anti-cardiovascular activities. The flavonoids are initially synthesized through the phenylpropanoid pathway, followed by catalysis with corresponding enzymes, while the triterpenoid saponins, especially astragalosides, are synthesized through the universal upstream pathways of mevalonate (MVA) and methylerythritol phosphate (MEP), and the downstream pathway of triterpenoid skeleton formation and modification. Moreover, the Astragalus polysaccharide (APS) possesses multiple pharmacological activities. In this review, we comprehensively discussed the biosynthesis pathway of flavonoids and triterpenoid saponins, and the structural features of polysaccharides in A. membranaceus. We further systematically summarized the pharmacological effects of bioactive ingredients in A. membranaceus, which laid the foundation for the development of clinical candidate agents. Finally, we proposed potential strategies of heterologous biosynthesis to improve the industrialized production and sustainable supply of natural products with pharmacological activities from A. membranaceus, thereby providing an important guide for their future development trend.
Assuntos
Saponinas , Triterpenos , Astragalus propinquus/química , Flavonoides/química , Triterpenos/química , Saponinas/química , Polissacarídeos/químicaRESUMO
Flowering time (FTi) is a major factor determining how quickly cotton plants reach maturity. Early maturity greatly affects lint yield and fiber quality and is crucial for mechanical harvesting of cotton in northwestern China. Yet, few quantitative trait loci (QTLs) or genes regulating early maturity have been reported in cotton, and the underlying regulatory mechanisms are largely unknown. In this study, we characterized 152, 68, and 101 loci that were significantly associated with the three key early maturity traits-FTi, flower and boll period (FBP) and whole growth period (WGP), respectively, via four genome-wide association study methods in upland cotton (Gossypium hirsutum). We focused on one major early maturity-related genomic region containing three single nucleotide polymorphisms on chromosome D03, and determined that GhAP1-D3, a gene homologous to Arabidopsis thaliana APETALA1 (AP1), is the causal locus in this region. Transgenic plants overexpressing GhAP1-D3 showed significantly early flowering and early maturity without penalties for yield and fiber quality compared to wild-type (WT) plants. By contrast, the mutant lines of GhAP1-D3 generated by genome editing displayed markedly later flowering than the WT. GhAP1-D3 interacted with GhSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), a pivotal regulator of FTi, both in vitro and in vivo. Changes in GhAP1-D3 transcript levels clearly affected the expression of multiple key flowering regulatory genes. Additionally, DNA hypomethylation and high levels of H3K9ac affected strong expression of GhAP1-D3 in early-maturing cotton cultivars. We propose that epigenetic modifications modulate GhAP1-D3 expression to positively regulate FTi in cotton through interaction of the encoded GhAP1 with GhSOC1 and affecting the transcription of multiple flowering-related genes. These findings may also lay a foundation for breeding early-maturing cotton varieties in the future.
Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Fibra de AlgodãoRESUMO
BACKGROUND: Sucrose, the major product of photosynthesis and the primary sugar transported as a soluble carbohydrate via the phloem, is a critical determinant for harvest yield in wheat crops. Sucrose-phosphatase (SPP) catalyzes the final step in the sucrose biosynthesis pathway, implying its essential role in the plant. RESULT: In this study, wheat SPP homologs genes were isolated from chromosomes 5A, 5B, and 5D, designated as TaSPP-5A, TaSPP-5B, and TaSPP-5D, respectively. Sequence alignment showed one 1-bp Insertion-deletion (InDel) and three single nucleotide polymorphisms (SNPs) at TaSPP-5A coding region, forming two haplotypes, TaSPP-5Aa and TaSPP-5Ab, respectively. A derived cleaved amplified polymorphism sequence (dCAPS) marker, TaSPP-5A-dCAPS, was developed to discriminate allelic variation based on the polymorphism at position 1242 (C-T). A total of 158 varieties were used to perform a TaSPP-5A marker-trait association analysis, where two haplotypes were significantly associated with sucrose content in two environments and with thousand-grain weight (TGW) and grain length (GL) in three environments. Quantitative real-time PCR further revealed that TaSPP-5Aa showed relatively higher expression than TaSPP-5Ab in wheat seedling leaves, generally associating with increased sucrose content and TGW. The expression of TaSPP-5A and sucrose content in TaSPP-5Aa haplotypes were also higher than those in TaSPP-5Ab haplotypes under both 20% PEG-6000 and 100 µM ABA treatment. Sequence alignment showed that the two TaSPP-5A haplotypes comprised 11 SNPs from -395 to -1962 bp at TaSPP-5A promoter locus, participating in the formation of several conserved sequences, may account for the high expression of TaSPP-5A in TaSPP-5Aa haplotypes. In addition, the distribution analysis of TaSPP-5A haplotypes revealed that TaSPP-5Aa was preferred in the natural wheat population, being strongly positively selected in breeding programs. CONCLUSION: According to the SNPs detected in the TaSPP-5A sequence, two haplotypes, TaSPP-5Aa and TaSPP-5Ab, were identified among wheat accessions, which potential value for sucrose content selection was validated by association analysis. Our results indicate that the favorable allelic variation TaSPP-5Aa should be valuable in enhancing grain yield by improving the sucrose content. Furthermore, a functional marker, TaSPP-5A-dCAPS, can be used for marker-assisted selection to improve grain weight in wheat and provides insights into the biological function of TaSPP-5A gene.
Assuntos
Genes de Plantas , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Sacarose/metabolismo , Triticum/genética , Triticum/metabolismo , China , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , GenótipoRESUMO
BACKGROUND: Kernel size-related traits, including kernel length (KL), kernel width (KW), kernel diameter ratio (KDR) and kernel thickness (KT), are critical determinants for wheat kernel weight and yield and highly governed by a type of quantitative genetic basis. Genome-wide identification of major and stable quantitative trait loci (QTLs) and functional genes are urgently required for genetic improvement in wheat kernel yield. A hexaploid wheat population consisting of 120 recombinant inbred lines was developed to identify QTLs for kernel size-related traits under different water environments. The meta-analysis and transcriptome evaluation were further integrated to identify major genomic regions and putative candidate genes. RESULTS: The analysis of variance (ANOVA) revealed more significant genotypic effects for kernel size-related traits, indicating the moderate to high heritability of 0.61-0.89. Thirty-two QTLs for kernel size-related traits were identified, explaining 3.06%-14.2% of the phenotypic variation. Eleven stable QTLs were detected in more than three water environments. The 1103 original QTLs from the 34 previous studies and the present study were employed for the MQTL analysis and refined into 58 MQTLs. The average confidence interval of the MQTLs was 3.26-fold less than that of the original QTLs. The 1864 putative candidate genes were mined within the regions of 12 core MQTLs, where 70 candidate genes were highly expressed in spikes and kernels by comprehensive analysis of wheat transcriptome data. They were involved in various metabolic pathways, such as carbon fixation in photosynthetic organisms, carbon metabolism, mRNA surveillance pathway, RNA transport and biosynthesis of secondary metabolites. CONCLUSIONS: Major genomic regions and putative candidate genes for kernel size-related traits in wheat have been revealed by an integrative strategy with QTL linkage mapping, meta-analysis and transcriptomic assessment. The findings provide a novel insight into understanding the genetic determinants of kernel size-related traits and will be useful for the marker-assisted selection of high yield in wheat breeding.
Assuntos
Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Melhoramento Vegetal , Cromossomos de Plantas , Fenótipo , ÁguaRESUMO
BACKGROUND: Plant glycogen synthase kinase 3/shaggy kinase (GSK3) proteins contain the conserved kinase domain and play a pivotal role in the regulation of plant growth and abiotic stress responses. Nonetheless, genome-wide analysis of the GSK gene family in wheat (Triticum aestivum L.) has not been reported. METHODS AND RESULTS: Using high-quality wheat genome sequences, a comprehensive genome-wide characterization of the GSK gene family in wheat was conducted. Their phylogenetics, chromosome location, gene structure, conserved domains, promoter cis-elements, gene duplications, and network interactions were systematically analyzed. In this study, we identified 22 GSK genes in wheat genome that were unevenly distributed on nine wheat chromosomes. Based on phylogenetic analysis, the GSK genes from Arabidopsis, rice, barley, and wheat were clustered into four subfamilies. Gene structure and conserved protein motif analysis revealed that GSK proteins in the same subfamily share similar motif structures and exon/intron organization. Results from gene duplication analysis indicate that four segmental duplications events contribute to the expansion of the wheat GSK gene family. Promoter analysis indicated the participation of TaSK genes in response to the hormone, light and abiotic stress, and plant growth and development. Furthermore, gene network analysis found that five TaSKs were involved in the regulatory network and 130 gene pairs of network interactions were identified. The heat map generated from the available transcriptomic data revealed that the TaSKs exhibited preferential expression in specific tissues and different expression patterns under abiotic stress conditions. Moreover, results from qRT-PCR analysis revealed that the randomly selected TaSK genes were abundantly expressed in spikes and grains at one specific developmental stage, as well as in responding to drought and salt stress. CONCLUSIONS: These findings clearly depicted the evolutionary processes and the characteristics, and expression profiles of the GSK gene family in wheat, revealed their role in wheat development and response to abiotic stress responses.
Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genéticaRESUMO
Hypericin (Hyp), well-known as an antidepressant, is mainly extracted from Hypericum perforatum. Although Hyp accumulation and biomass are greater at lower compared to higher temperature, the regulation mechanism has not been reported. Here, the physiological characteristics and transcriptome of H. perforatum grown at 15 and 22 °C were determined and analyzed by HPLC and de novo sequencing. The results showed that the stomatal density and opening percentages were 1.1- and 1.4-fold more, and the Hyp content was 4.5-fold greater at 15 °C compared to 22 °C. A total of 1584 differentially expressed genes (DEGs) were observed at 15 versus 22 °C, with 749 characterized genes, 421 upregulated (UR) and 328 downregulated (DR). Based on biological functions, 150 genes were associated with Hyp biosynthesis, plant growth and the stress response, including photosynthesis, carbohydrate metabolism, fatty acids metabolism, cytochrome P450 (CYPs), morpho-physiological traits, heat shock proteins (HSPs), cold-responsive proteins (CRPs) and transcription factors (TFs). The differential expression levels of the master genes were confirmed by qRT-PCR and almost consistent with their Reads Per kb per Million (RPKM) values. This physiological and transcriptomic analyses provided insight into the regulation mechanisms of low temperature enhancing Hyp biosynthesis in H. perforatum.
Assuntos
Hypericum/química , Perileno/análogos & derivados , Transcriptoma/genética , Antracenos , Perfilação da Expressão Gênica , Perileno/metabolismo , TemperaturaRESUMO
BACKGROUND: Cotton (Gossypium spp.) fiber yield is one of the key target traits, and improved fiber yield has always been thought of as an important objective in the breeding programs and production. Although some studies had been reported for the understanding of genetic bases for cotton yield-related traits, the detected quantitative trait loci (QTL) for the traits is still very limited. To uncover the whole-genome QTL controlling three yield-related traits in upland cotton (Gossypium hirsutum L.), phenotypic traits were investigated under four planting environments and 9244 single-nucleotide polymorphism linkage disequilibrium block (SNPLDB) markers were developed in an association panel consisting of 315 accessions. RESULTS: A total of 53, 70 and 68 significant SNPLDB loci associated with boll number (BN), boll weight (BW) and lint percentage (LP), were respectively detected through a restricted two-stage multi-locus multi-allele genome-wide association study (RTM-GWAS) procedure in multiple environments. The haplotype/allele effects of the significant SNPLDB loci were estimated and the QTL-allele matrices were organized for offering the abbreviated genetic composition of the population. Among the significant SNPLDB loci, six of them were simultaneously identified in two or more single planting environments and were thought of as the stable SNPLDB loci. Additionally, a total of 115 genes were annotated in the nearby regions of the six stable SNPLDB loci, and 16 common potential candidate genes controlling target traits of them were predicted by two RNA-seq data. One of 16 genes (GH_D06G2161) was mainly expressed in the early ovule-development stages, and the stable SNPLDB locus (LDB_19_62926589) was mapped in its promoter region. CONCLUSION: This study identified the QTL alleles and candidate genes that could provide important insights into the genetic basis of yield-related traits in upland cotton and might facilitate breeding cotton varieties with high yield.
Assuntos
Alelos , Fibra de Algodão , Produtos Agrícolas/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/genética , Locos de Características Quantitativas/genética , Produção Agrícola , Variação Genética , Genótipo , Fenótipo , Melhoramento VegetalRESUMO
BACKGROUND: The accumulation and remobilization of stem water soluble carbohydrates (WSC) are determinant physiological traits highly influencing yield potential in wheat against drought stress. However, knowledge gains of the genetic control are still limited. A hexaploid wheat population of 120 recombinant inbred lines were developed to identify quantitative trait loci (QTLs) and to dissect the genetic basis underlying eight traits related to stem WSC under drought stress (DS) and well-watered (WW) conditions across three environments. RESULTS: Analysis of variance (ANOVA) revealed larger environmental and genotypic effects on stem WSC-related traits, indicating moderate heritabilities of 0.51-0.72. A total of 95 additive and 88 pairs of epistatic QTLs were identified with significant additive and epistatic effects, as well as QTL× water environmental interaction (QEI) effects. Most of additive QTLs and additive QEIs associated with drought-stressed environments functioned genetic effects promoting pre-anthesis WSC levels and stem WSC remobilization to developing grains. Compared to other genetic components, both genetic effects were performed exclusive contributions to phenotypic variations in stem WSC-related traits. Nineteen QTL clusters were identified on chromosomes 1B, 2A, 2B, 2D, 3B, 4B, 5A, 6A, 6B and 7A, suggestive of the genetic linkage or pleiotropy. Thirteen additive QTLs were detectable repeatedly across two of the three water environments, indicating features of stable expressions. Some loci were consistent with those reported early and were further discussed. CONCLUSION: Stem WSC-related traits were inherited predominantly by additive and QEI effects with a moderate heritability. QTL cluster regions were suggestive of tight linkage or pleiotropy in the inheritance of these traits. Some stable and common loci, as well as closely linked molecular markers, had great potential in marker-assisted selection to improve stem WSC-related traits in wheat, especially under drought-stressed environments.
Assuntos
Carboidratos/química , Secas , Caules de Planta/química , Locos de Características Quantitativas , Estresse Fisiológico , Triticum/genética , Mapeamento Cromossômico , Meio Ambiente , Genótipo , Fenótipo , Triticum/química , Triticum/fisiologia , ÁguaRESUMO
BACKGROUND: Morphological traits related to flag leaves are determinant traits influencing plant architecture and yield potential in wheat (Triticum aestivum L.). However, little is known regarding their genetic controls under drought stress. One hundred and twenty F8-derived recombinant inbred lines from a cross between two common wheat cultivars Longjian 19 and Q9086 were developed to identify quantitative trait loci (QTLs) and to dissect the genetic bases underlying flag leaf width, length, area, length to width ratio and basal angle under drought stress and well-watered conditions consistent over four environments. RESULTS: A total of 55 additive and 51 pairs of epistatic QTLs were identified on all 21 chromosomes except 6D, among which additive loci were highly concentrated in a few of same or adjacent marker intervals in individual chromosomes. Two specific marker intervals of Xwmc694-Xwmc156 on chromosome 1B and Xbarc1072-Xwmc272 on chromosome 2B were co-located by additive QTLs for four tested traits. Twenty additive loci were repeatedly detected in more than two environments, suggestive of stable A-QTLs. A majority of QTLs involved significant additive and epistatic effects, as well as QTL × environment interactions (QEIs). Of these, 72.7 % of additive QEIs and 80 % of epistatic QEIs were related to drought stress with significant genetic effects decreasing phenotypic values. By contrast, additive and QEIs effects contributed more phenotypic variation than epistatic effects. CONCLUSIONS: Flag leaf morphology in wheat was predominantly controlled by additive and QEIs effects, where more QEIs effects occurred in drought stress and depressed phenotypic performances. Several QTL clusters indicated tight linkage or pleiotropy in the inheritance of these traits. Twenty stable QTLs for flag leaf morphology are potentially useful for the genetic improvement of drought tolerance in wheat through QTL pyramiding.
Assuntos
Cromossomos de Plantas/genética , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Secas , Epistasia Genética , Ligação Genética , Folhas de Planta/genética , Estresse Fisiológico , Triticum/anatomia & histologiaRESUMO
Fourier ptychographic microscopy (FPM) has emerged as a new wide-field and high-resolution computational imaging technique in recent years. To ensure data redundancy for a stable convergence solution, conventional FPM requires dozens or hundreds of raw images, increasing the time cost for both data collection and computation. Here, we propose a single-shot Fourier ptychographic microscopy with isotropic lateral resolution via polarization-multiplexed LED illumination, termed SIFPM. Three LED elements covered with 0°/45°/135° polarization films, respectively, are used to provide numerical aperture-matched illumination for the sample simultaneously. Meanwhile, a polarization camera is utilized to record the light field distribution transmitted through the sample. Based on weak object transfer functions, we first obtain the amplitude and phase estimations of the sample by deconvolution, and then we use them as the initial guesses of the FPM algorithm to refine the accuracy of reconstruction. We validate the complex sample imaging performance of the proposed method on quantitative phase target, unstained and stained bio-samples. These results show that SIFPM can realize quantitative imaging for general samples with the resolution of the incoherent diffraction limit, permitting high-speed quantitative characterization for cells and tissues.
RESUMO
Hymenopellis radicata (H. radicata) is an edible fungus rich in protein and mineral elements, with high edible and medical value. And reference genes suitable for normalization of qRT-PCR data from this species have not been investigated. In this study, therefore, we selected 11 housekeeping genes common in biology. The expression levels of these housekeeping genes were measured in three different tissues and six different abiotic stress treatments in mycelium. They were evaluated for expression stability using online tools. The results showed that gene ACT could be stable expressed in all samples. The expressions of genes TUB and UBQ10 are the most stable under heat stress, ACT and EF are the most stable genes under salt stress, ACT and TUB are the most stable genes under oxidation stress, RPL6 and EF are the most stable genes under pH condition, ACT and RPB2 are the most stable genes under cadmium stress, and RPB2 and UBC are the most stable genes under drought condition. ACT and PP2A are the most stable genes at different tissue sites. This study is of great help to explore the gene expression pattern of H. radicata, and also provides reference for internal reference gene screening under other conditions.
Assuntos
Agaricales , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estresse Fisiológico/genética , Perfilação da Expressão GênicaRESUMO
This study focuses on the difficulty of converting fluorinated rare earth elements into hydroxylated rare earth elements in rare earth melt electrolysis slag (RMES) and proposes the use of a microwave-assisted atmospheric alkaline leaching method for the treatment of RMES. The leaching behavior of RMES under microwave-assisted atmospheric alkaline leaching was studied, and the optimal reaction conditions were determined. Under the conditions of a reaction temperature of 150 °C, initial NaOH concentration of 60 %, NaOH-to-slag mass ratio of 4:1, microwave power of 700 W, reaction time of 120 min, and stirring speed of 300 r/min, the conversion rate of fluorinated rare earths reached 99.17 %. The apparent rate equation of the microwave-assisted atmospheric alkaline leaching process was obtained by leaching kinetic analysis, and the apparent activation energy under this process was calculated to be 54.872 kJ/mol, which was 12.458 kJ/mol lower than that achieved when conventional heating was used for leaching (67.33 kJ/mol).
RESUMO
The rhomboid-like (RBL) gene encodes serine protease, which plays an important role in the response to cell development and diverse stresses. However, genome-wide identification, expression profiles, and haplotype analysis of the RBL family genes have not been performed in wheat (Triticum aestivum L.). This study investigated the phylogeny and diversity of the RBL family genes in the wheat genome through various approaches, including gene structure analysis, evolutionary relationship analysis, promoter cis-acting element analysis, expression pattern analysis, and haplotype analysis. The 41 TaRBL genes were identified and divided into five subfamilies in the wheat genome. RBL family genes were expanded through segmented duplication and purification selection. The cis-element analysis revealed their involvement in various stress responses and plant development. The results of RNA-seq and quantitative real-time-PCR showed that TaRBL genes displayed higher expression levels in developing spike/grain and were differentially regulated under polyethylene glycol, NaCl, and abscisic acid treatments, indicating their roles in grain development and abiotic stress response. A kompetitive allele-specific PCR molecular marker was developed to confirm the single nucleotide polymorphism of TaRBL14a gene in 263 wheat accessions. We found that the elite haplotype TaRBL14a-Hap2 showed a significantly higher 1000-grain weight than TaRBL14a-Hap11 in at least three environments, and the TaRBL14a-Hap2 was positively selected in wheat breeding. The findings will provide a good insight into the evolutionary and functional characteristics of the TaRBL genes family in wheat and lay the foundation for future exploration of the regulatory mechanisms of TaRBL genes in plant growth and development, as well as their response to abiotic stresses.
Assuntos
Regulação da Expressão Gênica de Plantas , Haplótipos , Filogenia , Proteínas de Plantas , Triticum , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Estresse Fisiológico/genética , Genoma de Planta , Genes de PlantasRESUMO
Through whole-genome re-sequencing of 18 Hymenopellis radicata germplasm resources collected from diverse regions in China, we identified significant variations in the form of Single Nucleotide Polymorphisms (SNPs) and Insertions and Deletions (InDels). These variations were comprehensively annotated, shedding light on the mutation types present in the entire genome of the H. radicata germplasm. This analysis revealed the number and position information of each mutation and provided insights into the overall genomic landscape of H. radicata germplasm. Utilizing SNP data, we delved into the population structure of the 18 H. radicata germplasm resources. The results indicated the presence of 2,335,179 Indel sites and 12,050,448 SNP sites. The population structure analysis unveiled two distinct subgroups among the H. radicata germplasm resources. Phenotypic statistics, principal component analysis, and phylogenetic tree results echoed the findings of the population structure analysis. Different strains of H. radicata from various regions in China exhibited notable differences in genetic diversity, mycelial growth rate, yield, and fruiting body characteristics. Significant disparities were observed between the two subgroups, while strains within each subgroup shared common characteristics. This research establishes a solid foundation for integrating H. radicata into diverse breeding programs. The data underscore the potential of H. radicata for genetic improvement and exploitation in breeding initiatives, paving the way for future advancements in this field.
RESUMO
Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.