Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(3): 2320-2342, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534764

RESUMO

Rare ginsenoside compound K (CK) is an intestinal microbial metabolite with a low natural abundance that is primarily produced by physicochemical processing, side chain modification, or metabolic transformation in the gut. Moreover, CK exhibits potent biological activity compared to primary ginsenosides, which has raised concerns in the field of ginseng research and development, as well as ginsenoside-related dietary supplements and natural products. Ginsenosides Rb1, Rb2, and Rc are generally used as a substrate to generate CK via several bioconversion processes. Current research shows that CK has a wide range of pharmacological actions, including boosting osteogenesis, lipid and glucose metabolism, lipid oxidation, insulin resistance, and anti-inflammatory and anti-apoptosis properties. Further research on the bioavailability and toxicology of CK can advance its medicinal application. The purpose of this review is to lay the groundwork for future clinical studies and the development of CK as a therapy for metabolic disorders. Furthermore, the toxicology and pharmacology of CK are investigated as well in this review. The findings indicate that CK primarily modulates signaling pathways associated with AMPK, SIRT1, PPARs, WNTs, and NF-kB. It also demonstrates a positive therapeutic effect of CK on non-alcoholic fatty liver disease (NAFLD), obesity, hyperlipidemia, diabetes, and its complications, as well as osteoporosis. Additionally, the analogues of CK showed more bioavailability, less toxicity, and more efficacy against disease states. Enhancing bioavailability and regulating hazardous variables are crucial for its use in clinical trials.

2.
Curr Issues Mol Biol ; 46(6): 5488-5510, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38921000

RESUMO

The PHLDA (pleckstrin homology-like domain family) gene family is popularly known as a potential biomarker for cancer identification, and members of the PHLDA family have become considered potentially viable targets for cancer treatments. The PHLDA gene family consists of PHLDA1, PHLDA2, and PHLDA3. The predictive significance of PHLDA genes in cancer remains unclear. To determine the role of pleckstrin as a prognostic biomarker in human cancers, we conducted a systematic multiomics investigation. Through various survival analyses, pleckstrin expression was evaluated, and their predictive significance in human tumors was discovered using a variety of online platforms. By analyzing the protein-protein interactions, we also chose a collection of well-known functional protein partners for pleckstrin. Investigations were also carried out on the relationship between pleckstrins and other cancers regarding mutations and copy number alterations. The cumulative impact of pleckstrin and their associated genes on various cancers, Gene Ontology (GO), and pathway analyses were used for their evaluation. Thus, the expression profiles of PHLDA family members and their prognosis in various cancers may be revealed by this study. During this multiomics analysis, we found that among the PHLDA family, PHLDA1 may be a therapeutic target for several cancers, including kidney, colon, and brain cancer, while PHLDA2 can be a therapeutic target for cancers of the colon, esophagus, and pancreas. Additionally, PHLDA3 may be a useful therapeutic target for ovarian, renal, and gastric cancer.

3.
Curr Issues Mol Biol ; 46(4): 3328-3341, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38666938

RESUMO

Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-ß-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 µg/mL and 10 µg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.

4.
Arch Microbiol ; 206(4): 137, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436734

RESUMO

Butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, is a source of energy for colonocytes. Butyrate is essential for improving gastrointestinal (GI) health since it helps colonocyte function, reduces inflammation, preserves the gut barrier, and fosters a balanced microbiome. Human colonic butyrate producers are Gram-positive firmicutes, which are phylogenetically varied. The two most prevalent subgroups are associated with Eubacterium rectale/Roseburia spp. and Faecalibacterium prausnitzii. Now, the mechanism for the production of butyrate from microbes is a very vital topic to know. In the present study, we discuss the genes encoding the core of the butyrate synthesis pathway and also discuss the butyryl-CoA:acetate CoA-transferase, instead of butyrate kinase, which usually appears to be the enzyme that completes the process. Recently, butyrate-producing microbes have been genetically modified by researchers to increase butyrate synthesis from microbes. The activity of butyrate as a histone deacetylase inhibitor (HDACi) has led to several clinical trials to assess its effectiveness as a potential cancer treatment. Among various significant roles, butyrate is the main energy source for intestinal epithelial cells, which helps maintain colonic homeostasis. Moreover, people with non-small-cell lung cancer (NSCLC) have distinct gut microbiota from healthy adults and frequently have dysbiosis of the butyrate-producing bacteria in their guts. So, with an emphasis on colon and lung cancer, this review also discusses how the microbiome is crucial in preventing the progression of certain cancers through butyrate production. Further studies should be performed to investigate the underlying mechanisms of how these specific butyrate-producing bacteria can control both colon and lung cancer progression and prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Colorretais , Neoplasias Pulmonares , Adulto , Humanos , Neoplasias Pulmonares/prevenção & controle , Ácidos Graxos Voláteis , Butiratos , Neoplasias Colorretais/prevenção & controle
5.
Med Sci Monit ; 30: e942899, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38509819

RESUMO

BACKGROUND The gut microbial metabolites demonstrate significant activity against metabolic diseases including osteoporosis (OP) and obesity, but active compounds, targets, and mechanisms have not been fully identified. Hence, the current investigation explored the mechanisms of active metabolites and targets against OP and obesity by using network pharmacology approaches. MATERIAL AND METHODS The gutMGene database was used to collect gut microbial targets-associated metabolites; DisGeNET and OMIM databases were used to identify targets relevant to OP and obesity. A total of 63 and 89 overlapped targets were considered the final OP and obesity targets after creating a Venn diagram of metabolites-related targets and disease-related targets. Furthermore, the top 20% of degrees, betweenness, and closeness were used to form the sub-network of protein-protein interaction of these targets. Finally, the biotransformation-increased receptors and biological mechanisms were identified and validated using ADMET properties analysis, molecular docking, and molecular dynamic simulation. RESULTS GO, KEGG pathway analysis, and protein-protein interactions were performed to establish metabolites and target networks. According to the enrichment analysis, OP and obesity are highly linked to the lipid and atherosclerosis pathways. Moreover, ADMET analysis depicts that the major metabolites have drug-likeliness activity and no or less toxicity. Following that, the molecular docking studies showed that compound K and TP53 target have a remarkable negative affinity (-8.0 kcal/mol) among all metabolites and targets for both diseases. Finally, the conformity of compound K against the targeted protein TP53 was validated by 250ns MD simulation. CONCLUSIONS Therefore, we summarized that compound K can regulate TP53 and could be developed as a therapy option for OP and obesity.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Ginsenosídeos , Osteoporose , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Biologia Computacional , Simulação de Dinâmica Molecular , Obesidade/tratamento farmacológico , Osteoporose/tratamento farmacológico
6.
Med Res Rev ; 43(5): 1374-1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36939049

RESUMO

Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.


Assuntos
Ginsenosídeos , Panax , Humanos , Ginsenosídeos/farmacologia , Panax/química , Extratos Vegetais/química
7.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175202

RESUMO

BACKGROUND AND OBJECTIVE: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. METHODS AND RESULTS: Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0-8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-ß-hydroxydammar-3-one-20(S)-O-ß-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed.


Assuntos
Ginsenosídeos , Humanos , Ginsenosídeos/química , Biotransformação , Glicosídeo Hidrolases/metabolismo , Fibroblastos/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , beta-Glucosidase/metabolismo
8.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677964

RESUMO

The unique and tailorable physicochemical features of zinc oxide nanoparticles (ZnO-NPs) synthesized from green sources make them attractive for use in cancer treatment. Hydroponic-cultured ginseng-root-synthesized ZnO-NPs (HGRCm-ZnO NPs) were coated with O-carboxymethyl chitosan (CMC) polymer, which stabilized and enhanced the biological efficacy of the nanoparticles. Nanoparticles were characterized by X-ray diffraction (XRD), UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS). The flower-shaped nanoparticles were crystalline in nature with a particle size of 28 nm. To evaluate if these NPs had anti-lung cancer activity, analysis was performed on a human lung carcinoma cell line (A549). HGRCm-ZnO nanoparticles showed less toxicity to normal keratinocytes (HaCaTs), at concentrations up to 20 µg/mL, than A549 cancer cells. Additionally, these NPs showed dose-dependent colony formation and cell migration inhibition ability, which makes them more promising for lung cancer treatment. Additionally, Hoechst and propidium iodide dye staining also confirmed that the NP formulation had apoptotic activity in cancer cells. Further, to evaluate the mechanism of cancer cell death via checking the gene expression, HGRCm ZnO NPs upregulated the BAX and Caspase 3 and 9 expression levels but downregulated Bcl-2 expression, indicating that the nanoformulation induced mitochondrial-mediated apoptosis. Moreover, these preliminary results suggest that HGRCm ZnO NPs can be a potential candidate for future lung cancer treatment.


Assuntos
Nanopartículas Metálicas , Neoplasias , Panax , Óxido de Zinco , Humanos , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Regulação para Baixo , Hidroponia , Apoptose , Linhagem Celular , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Expressão Gênica , Panax/metabolismo , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903444

RESUMO

Postmenopausal women experience several symptoms, including inflammation and a sharp rise in oxidative stress caused by estrogen deprivation. Although estrogen replacement therapy (ERT) is generally regarded as an effective treatment for menopause, it has been used less frequently due to some adverse effects and high costs. Therefore, there is an immediate need to develop an effective herbal-based treatment that is affordable for low-income populations. Acordingly, this study explored the estrogen-like properties of methanol extracts from Cynanchum wilfordii (CW) and Poligonum multiflorum (PM), two important medicinal plants in Republic of Korea, Japan, and China. Due to the similar names and morphologies of these two radixes, they are frequently confused in the marketplace. Our previous colleagues discriminated between these two plants. In this study, we investigated the estrogenic activity of PM and CW using several in vitro assays with their possible mechanism of action. First, their phytochemical contents, such as gallic acid, 2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG) and emodin, were quantified using high-performance liquid chromatography (HPLC). Secondly, estrogen-like activity was assessed utilizing the well-known E-screen test and gene expression analysis in estrogen receptor (ER)-positive MCF7 cells. ROS inhibition and anti-inflammatory effects were analyzed using HaCaT and Raw 264.7 cells, respectively. Our findings demonstrate that PM extracts significantly increased the expression of the estrogen-dependent genes (ERα, ERß, pS2) and boosted MCF7 cell proliferation in comparison to CW extracts. Additionally, PM extract demonstrated a significant reduction in reactive oxygen species (ROS) production as well as an enhanced antioxidant profile compared to the CW extract. Further, the PM extract treatment significantly reduced the generation of nitric oxide (NO) in RAW 264.7 cells, a murine macrophage cell line, demonstrating the anti-inflammatory properties of the extract. Finally, this research offers an experimental foundation for the use of PM as a phytoestrogen to minimize menopausal symptoms.


Assuntos
Receptor alfa de Estrogênio , Receptores de Estrogênio , Humanos , Feminino , Camundongos , Animais , Células MCF-7 , Espécies Reativas de Oxigênio , Extratos Vegetais/farmacologia , Fitoestrógenos , Anti-Inflamatórios
10.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500403

RESUMO

Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses on the two metastatic regulators, Rho-associated protein kinase 1 (ROCK1) and RhoA, along with other standard apoptosis regulators. The ROCK1 protein is a member of the active serine/threonine kinase family that is crucial for many biological processes, including cell division, differentiation, and death, as well as many cellular processes and muscle contraction. The abnormal activation of ROCK1 kinase causes several disorders, whereas numerous studies have also shown that RhoA is expressed highly in various cancers, including colon, lung, ovarian, gastric, and liver malignancies. Hence, inhibiting both ROCK1 and RhoA will be promising in preventing metastasis. Therefore, the molecular level interaction of G-Rh1 with the ROCK1 and RhoA active site residues from the preliminary screening clearly shows its inhibitory potential. Molecular dynamics simulation and principal component analysis give essential insights for comprehending the conformational changes that result from G-Rh1 binding to ROCK1 and RhoA. Further, MTT assay was employed to examine the potential cytotoxicity in vitro against human lung cancer cells (A549) and Raw 264.7 Murine macrophage cells. Thus, G-Rh1 showed significant cytotoxicity against human lung adenocarcinoma (A549) at 100 µg/mL. In addition, we observed an elevated level of reactive oxygen species (ROS) generation, perhaps promoting cancer cell toxicity. Additionally, G-Rh1 suppressed the mRNA expression of RhoA, ROCK1, MMP1, and MMP9 in cancer cell. Accordingly, G-Rh1 upregulated the p53, Bax, Caspase 3, caspase 9 while Bcl2 is downregulated intrinsic pathway. The findings from our study propose that the anticancer activity of G-Rh1 may be related to the induction of apoptosis by the RhoA/ROCK1 signaling pathway. As a result, this study evaluated the functional drug-like compound G-Rh1 from Panax ginseng in preventing and treating lung cancer adenocarcinoma via regulating metastasis and apoptosis.


Assuntos
Ginsenosídeos , Neoplasias Pulmonares , Panax , Humanos , Camundongos , Animais , Células A549 , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Ginsenosídeos/química , Apoptose , Panax/metabolismo
11.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566145

RESUMO

Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV-VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Regulação para Baixo , Expressão Gênica , Ouro/química , Ouro/farmacologia , Química Verde/métodos , Gynostemma , Inflamação/tratamento farmacológico , Inflamação/genética , Nanopartículas Metálicas/química , Camundongos , Obesidade , PPAR gama/genética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/genética
12.
Arch Microbiol ; 203(5): 2193-2198, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620525

RESUMO

A novel Gram-reaction positive-, catalase and oxidase negative-, rod-shaped, facultatively anaerobic bacterial strain, DCY120T, was isolated from the gut of honeybee (Apis cerana) in Gyeonggi-do, South Korea. Strain DCY120T belongs to the genus Bombilactobacillus and is moderately related to Bombilactobacillus mellis Hon2T (94.1% similarity), Bombilactobacillus bombi BTLCH M1/2T (93.8%), and Bombilactobacillus mellifer Bin4NT (93.5%) based on 16S rRNA gene sequence analysis. The genome of strain DCY120T was sequenced and the average nucleotide identity (ANI) between strain DCY120T and the related Bombilactobacillus type strains were below the threshold value (95-96%) for species delineation. The major fatty acids were C16:0, C18:1 ω9c, Summed C19:1 ω6c/C19:0 cyclo ω10c/C19:0 ω6 and Summed C18:1 ω7c/C18:1 ω6c. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one glycolipid (GL), and one unidentified aminophospholipid (APL). The amino acids in peptidoglycan of strain DCY120T were lysine, alanine, glutamic acid, and aspartic acid. In conclusion, the description of phenotypic and genotypic properties support strain DCY120T as a novel species within the genus Bombilactobacillus, for which the name Bombilactobacillus apium sp. nov. is proposed. The type strain is DCY120T (= KCTC 43194T = JCM 34006T).


Assuntos
Abelhas/microbiologia , Lactobacillaceae , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano/genética , Glicolipídeos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
13.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011448

RESUMO

This study focused on developing Panos nanoemulsion (P-NE) and enhancing the anti-inflammatory efficacy for the treatment of inflammation. The effects of P-NE were evaluated in terms of Nitric oxide (NO production) in Lipopolysaccharide (LPS), induced RAW 264.7 cells, Reactive oxygen species (ROS) generation using Human Keratinocyte cells (HaCaT), and quantitative polymerase chain reaction (qPCR) analysis. Sea buckthorn oil, Tween 80, and span 80 were used and optimize the process. Panos extract (P-Ext) was prepared using the fermentation process. Further high-energy ultra-sonication was used for the preparation of P-NE. The developed nanoemulsion (NE) was characterized using different analytical methods. Field emission transmission electron microscopy (FE-TEM) analyzed the spherical shape and morphology. In addition, stability was analyzed by Dynamic light scattering (DLS) analysis, where particle size was analyzed 83 nm, and Zeta potential -28.20 ± 2 (mV). Furthermore, 90 days of stability was tested using different temperatures conditions where excellent stability was observed. P-NE are non-toxic in (HaCaT), and RAW264.7 cells up to 100 µg/mL further showed effects on ROS and NO production of the cells at 50 µg/mL. The qPCR analysis demonstrated the suppression of pro-inflammatory mediators for (Cox 2, IL-6, IL-1ß, and TNF-α, NF-κB, Ikkα, and iNOS) gene expression. The prepared NE exhibited anti-inflammatory effects, demonstrating its potential as a safe and non-toxic nanomedicine.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Emulsões , Fermentação , Extratos Vegetais/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Estabilidade de Medicamentos , Mediadores da Inflamação , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral
14.
Arch Microbiol ; 202(6): 1341-1347, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32152645

RESUMO

A new bacterium, designated DCY113T, was isolated from ginseng cultivation soil in Gochang-gun, South Korea, and its taxonomic position identified by the polyphasic approach. 16S rRNA gene sequence analysis determined that this isolate belongs to the genus Paraburkholderia, and was closest to P. dipogonis DL7T (98.6%), P. phytofirmans PsJNT (98.5%), P. kirstenboschensis Kb15T (98.4%) and P. aromaticivorans BNT (98.1%). Strain DCY113T is Gram-reaction negative, strictly aerobic, rod-shaped, non-motile, and catalase and oxidase positive. The predominant isoprenoid quinone of DCY113T was ubiquinone Q-8. The major cellular fatty acids were C16:0, cyclo-C17:0 and the Summed feature 8 (C18:1ω7c and/or C18:1ω6c). The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and an unknown amino lipid (AL1). The G+C content of the genomic DNA was 62.2 mol%. Average nucleotide identity (ANI) between strain DCY113T and the related Paraburkholderia type strains were below the threshold value for species delineation. This low DNA relatedness in combination with phylogenetic and phenotypic tests indicates that strain DCY113T cannot be assigned to any recognized species. Strain DCY113T was also found to have antifungal activity against the pathogenic fungi Cylindrocarpon destructans. In conclusion, this study found DCY113T to be a novel species within the genus Paraburkholderia, for which the name P. panacisoli is proposed. The type strain is DCY113T (= KCTC 52951T = JCM 32098T).


Assuntos
Antibiose , Burkholderiaceae/classificação , Burkholderiaceae/fisiologia , Hypocreales/fisiologia , Panax/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
15.
Mol Biol Rep ; 47(10): 7699-7708, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32974840

RESUMO

Chrysanthemum indicum L. is a traditional oriental medicinal herb prepared as a tea from flowers that have been used in China and South Korea since ancient times. It has a long history in the treatment of hypertension, inflammation, and respiratory diseases. Among Chrysanthemum species, C. indicum has more active chemical components as well as better therapeutic effects, and C. indicum is mostly used for medicinal purposes in South Korea. However, the usage of C. indicum has become problematic over the years due to the abundance of adulterated Chrysanthemum and confusion with morphologically related species such as C. morifolium, C. boreale, and Aster spathulifolius. Thus, here we developed a method for molecular authentication using chloroplast universal region rpoC2 and morphological authentication based on T-shaped trichomes of the adaxial leaf surface. By using a species-specific primer derived from the rpoC2 region, we established a multiplex allele-specific PCR for the discrimination of C. indicum. Amplicons of 675 bp for C. indicum and 1026 bp for other Chrysanthemum species were produced using both rpoC2-specific and common primers. These primers can be used to analyze dried samples of Chrysanthemum. Morphological discrimination was performed using T-shaped trichomes present only on the adaxial leaf surface of C. indicum species, and then molecular markers were utilized to authenticate C. indicum products from adulterant samples available in the market. Our results indicate that these molecular markers in combination with morphological differentiation can serve as an effective tool for identifying C. indicum.


Assuntos
Alelos , Cloroplastos/genética , Chrysanthemum/genética , Plantas Medicinais/genética , Reação em Cadeia da Polimerase , Tricomas/genética , Chrysanthemum/classificação , Plantas Medicinais/classificação , Especificidade da Espécie , Tricomas/classificação
16.
Mol Biol Rep ; 47(6): 4507-4518, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424525

RESUMO

Cytochrome P450 monooxygenase 704B (CYP704B), a member of the CYP86 clan, was found to be needed in Arabidopsis and rice to biosynthesize precursors of sporopollenin through oxidizing fatty acids. In the present study, we cloned and characterized a CYP704B gene in Panax ginseng, named PgCYP704B1. It shared high sequence identity (98-99%) with CYP704 of Arabidopsis, Theobroma cacao, and Morus notabilis. The phylogenetic comparison of ginseng and higher plants between the members of CYP86 clan revealed that ginseng CYP704 was categorized as a group of CYP704B with dicot plants. The expression of PgCYP704B1 is low in the stem, leaf, and fruit, and high in flower buds, particularly detected in the young gametic cell and tapetum layer of the developing anther. Arabidopsis plants overexpressing PgCYP704B1 improved plant biomass such as plant height, siliques and seed number and size. A cytological observation by transverse and longitudinal semi-thin sections of the siliques cuticles revealed that the cell length increased. Furthermore a chemical analysis showed that PgCYP704B1ox lines increased their cutin monomers contents in the siliques. Our results suggest that PgCYP704B1 has a conserved role during male reproduction for fatty acid biosynthesis and its overexpression increases cutin monomers in siliques that eventually could be used for seed production.


Assuntos
Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Panax/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biomassa , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lipídeos de Membrana/metabolismo , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
17.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188055

RESUMO

Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.


Assuntos
Tolerância a Medicamentos/genética , Genoma Bacteriano , Ferro/metabolismo , Panax/microbiologia , Sphingomonas/genética , Sphingomonas/fisiologia , DNA Bacteriano , Genes Bacterianos/genética , Tamanho do Genoma , Hidroxibenzoatos , Ferro/toxicidade , Metais Pesados , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Microbiologia do Solo , Sphingomonas/efeitos dos fármacos , Sphingomonas/isolamento & purificação , Estresse Fisiológico
18.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751233

RESUMO

Ginsenosides are the major bioactive constituents of Panax ginseng, which have pharmacological effects. Although there are several reviews in regards to ginsenosides, new ginsenosides have been detected continually in recent years. This review updates the ginsenoside list from P. ginseng to 170 by the end of 2019, and aims to highlight the diversity of ginsenosides in multiple dimensions, including chemical structure, tissue spatial distribution, time, and isomeride. Protopanaxadiol, protopanaxatriol and C17 side-chain varied (C17SCV) manners are the major types of ginsenosides, and the constitute of ginsenosides varied significantly among different parts. Only 16 ginsenosides commonly exist in all parts of a ginseng plant. Protopanaxadiol-type ginsenoside is dominant in root, rhizome, leaf, stem, and fruit, whereas malonyl- and C17SCV-type ginsenosides occupy a greater proportion in the flower and flower bud compared with other parts. In respects of isomeride, there are 69 molecular formulas corresponding to 170 ginsenosides, and the median of isomers is 2. This is the first review on diversity of ginsenosides, providing information for reasonable utilization of whole ginseng plant, and the perspective on studying the physiological functions of ginsenoside for the ginseng plant itself is also proposed.


Assuntos
Panax/química , Extratos Vegetais/química , Saponinas/química , Ginsenosídeos/química , Isomerismo , Espectrometria de Massas , Metabolômica , Especificidade de Órgãos , Extratos Vegetais/isolamento & purificação , Saponinas/isolamento & purificação , Relação Estrutura-Atividade
19.
Molecules ; 25(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517049

RESUMO

Ginseng (Panax ginseng Meyer) is one of the most important medicinal herbs in Asia. Its pharmacological activity comes from ginsenosides, and its roots are produced commercially for traditional and Oriental medicine. Though 17 Panax species are available around the world, there was a need to develop cultivars adapted to different climatic conditions and resistant to various diseases while still producing high-quality, high-yield roots. Thus, 12 and 9 commercial P. ginseng cultivars have been registered in South Korea and China, respectively. Those varieties show superiority to local landraces. For example, Chunpoong is more highly resistant to rusty rot disease than the local Jakyungjong landrace and has a good root shape; it is highly cultivated to produce red ginseng. The Chinese cultivar Jilin Huangguo Renshen has higher ginsenoside content than its local landraces. This review provides information about P. ginseng cultivars and offers directions for future research, such as intra- and interspecific hybridization.


Assuntos
Ginsenosídeos/análise , Panax/química , Panax/metabolismo , China , Produtos Agrícolas , Panax/classificação , República da Coreia , Especificidade da Espécie
20.
Molecules ; 25(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987784

RESUMO

Ginseng is a traditional medicinal herb commonly consumed world-wide owing to its unique family of saponins called ginsenosides. The absorption and bioavailability of ginsenosides mainly depend on an individual's gastrointestinal bioconversion abilities. There is a need to improve ginseng processing to predictably increase the pharmacologically active of ginsenosides. Various types of ginseng, such as fresh, white, steamed, acid-processed, and fermented ginsengs, are available. The various ginseng processing methods produce a range ginsenoside compositions with diverse pharmacological properties. This review is intended to summarize the properties of the ginsenosides found in different Panax species as well as the different processing methods. The sugar moiety attached to the C-3, C-6, or C-20 deglycosylated to produce minor ginsenosides, such as Rb1, Rb2, Rc, Rd→Rg3, F2, Rh2; Re, Rf→Rg1, Rg2, F1, Rh1. The malonyl-Rb1, Rb2, Rc, and Rd were demalonylated into ginsenoside Rb1, Rb2, Rc, and Rd by dehydration. Dehydration also produces minor ginsenosides such as Rg3→Rk1, Rg5, Rz1; Rh2→Rk2, Rh3; Rh1→Rh4, Rk3; Rg2→Rg6, F4; Rs3→Rs4, Rs5; Rf→Rg9, Rg10. Acetylation of several ginsenosides may generate acetylated ginsenosides Rg5, Rk1, Rh4, Rk3, Rs4, Rs5, Rs6, and Rs7. Acid processing methods produces Rh1→Rk3, Rh4; Rh2→Rk1, Rg5; Rg3→Rk2, Rh3; Re, Rf, Rg2→F1, Rh1, Rf2, Rf3, Rg6, F4, Rg9. Alkaline produces Rh16, Rh3, Rh1, F4, Rk1, ginsenoslaloside-I, 20(S)-ginsenoside-Rh1-60-acetate, 20(R)-ginsenoside Rh19, zingibroside-R1 through hydrolysis, hydration addition reactions, and dehydration. Moreover, biological processing of ginseng generates the minor ginsenosides of Rg3, F2, Rh2, CK, Rh1, Mc, compound O, compound Y through hydrolysis reactions, and synthetic ginsenosides Rd12 and Ia are produced through glycosylation. This review with respect to the properties of particular ginsenosides could serve to increase the utilization of ginseng in agricultural products, food, dietary supplements, health supplements, and medicines, and may also spur future development of novel highly functional ginseng products through a combination of various processing methods.


Assuntos
Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Panax/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA