Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(2): 1236-1246, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38174906

RESUMO

A systematic evaluation of enhancing photocatalysis via aliovalent cation doping is conducted. Cation In3+, being p-type-doped, was chosen to substitute the Sn site (Sn4+) in Li2SnO3, and the photodegradation of 2,4-dichlorophenol was applied as a model reaction. Specifically, Li2Sn0.90In0.10O3 exhibited superior catalytic performance; the photodegradation efficiency reached about 100% within only 12 min. This efficiency is far greater than that of pure Li2SnO3 under identical conditions. Density functional theory calculations reveal that introducing In3+ increased the electron mobility, yet decreased the hole mobility, leading to photogenerated carrier separation. However, photoluminescence and time-resolved photoluminescence suggest that In3+ induced nonradiative coupling in the matrix, reducing the photogenerated carrier separation ratio compared with that of Li2SnO3. The optical band gap of Li2Sn0.90In0.10O3 was almost unchanged compared with that of Li2SnO3 via ultraviolet-visible absorption. The increased photocatalytic efficiency was ascribed to the lower valence band position and enhanced hole concentrations by valence band X-ray photoelectron spectroscopy and electrochemical measurements. Finally, a 2,4-dichlorophenol degradation pathway, an intermediate toxicity assessment, and a photocatalytic mechanism were proposed. This work offers insights into designing and optimizing semiconductor photocatalysts with high performance.

2.
Inorg Chem ; 61(34): 13413-13420, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35972288

RESUMO

Cation disorder in hydroxide-based perovskites remains relatively under-researched. In this work, novel hydroxide-based perovskite Sn1/3Na2/3Sn(OH)6 was first fabricated by a direct hydrothermal method, and its ability to photodegrade 2,4-dichlorophenol was evaluated. The synthesized photocatalyst is isostructural with MSn(OH)6 (M = Mg, Ca, Sr, Mn, Fe, Co, Ni, or Zn), where the M site is occupied by disordered Sn4+/Na+. Sn1/3Na2/3Sn(OH)6 exhibits outstanding photocatalytic activity under ultraviolet light. Specifically, 99% of 2,4-DCP is photodegraded in 40 min, with approximately 94% of its total chlorine content converted to Cl- anions. Radical trapping experiments indicated that superoxide radical anions (·O2-) play a critical role during the photocatalytic process. Finally, liquid chromatography-tandem mass spectrometry was conducted to monitor the photocatalytic intermediates. Overall, our findings demonstrate that hydroxide-based perovskites with cation disorder show promise for application in photocatalysis.


Assuntos
Clorofenóis , Compostos de Cálcio , Catálise , Hidróxidos , Óxidos , Titânio
3.
Chemphyschem ; 22(24): 2579-2584, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34622539

RESUMO

Understanding the correlation between crystal structure and thermal conductivity in semiconductors is very important for designing heat-transport-related devices, such as high-performance thermoelectric materials and heat dissipation in micro-nano-scale devices. In this work, the lattice thermal conductivity ( κ L ) of the cage-like compounds Cu3 VSe4 and Cu3 NbSe4 was investigated by experimental measurements and first-principles calculations. The experimental κ L of Cu3 NbSe4 is approximately 25 % lower than that of Cu3 VSe4 at 300 K. The relevant important physical parameters, including the sound velocity, heat capacity, weighted phonon phase space (W), and third-order force constants along with atomic mass were theoretically analyzed. It is found that W is the dominant parameter in determining the κ L , and the other factors only play a minor role. The physical origin is the relatively "soft" lattice of Cu3 NbSe4 with heavier atomic mass. This research provides deep insight into the correlation between the thermal conductivity and crystal structure and paves the way for discovering high-performance thermal management device and thermoelectric materials with intrinsically low κ L .

4.
Inorg Chem ; 60(16): 12331-12338, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34309367

RESUMO

Applying crystal symmetry to discover and optimize the performance of thermoelectric (TE) materials has attracted much attention. Here, we report CoGeTe with a middle-class crystalline system as a novel n-type TE material. Density functional theory indicates that orthorhombic CoGeTe shows multiband dispersion near the bottom of the conduction band, which is mainly occupied by the Co 3d states. Through Ni doping, these multiple bands can be activated, leading to a maximum power factor of 1.14 mW/m K2@786 K for Co0.95Ni0.05GeTe. In addition, phonon-dispersion calculations reveal that CoGeTe possesses relatively strong harmonic properties, including sound velocity and Debye temperature. Furthermore, the local distorted CoGe3Te3 octahedron in the matrix is beneficial for anharmonic phonon scattering. In particular, the Grüneisen parameter of Te in the crystal structure is clearly larger than those of Co and Ge. The observed thermal conductivity of Co0.95Ni0.05GeTe is between 6.50 and 5.38 W/m K in the temperature range 300-860 K. Owing to the combination of the enhanced power factor and reduced thermal conductivity, the maximum zT value reaches 0.18 at 860 K. This study suggests that TE materials with orthorhombic structures provide an ideal platform to balance the power factor and thermal conductivity in search of high-performance thermoelectrics.

5.
Inorg Chem ; 59(18): 13136-13143, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32869632

RESUMO

There is a need for photocatalysts with efficient photocarrier separation to address issues with environmental pollution. Photocarrier separation is largely determined by the orbital composition near the band edge. Here, we investigate Zn4B6O13 as an efficient photocatalyst for photodegradation of tetracycline. Theoretical calculations of Zn4B6O13 show that the valence band near the Fermi level is composed of d and p orbitals whereas the bottom of the conduction band is composed of s and p orbitals; thus, a large value of mh*/me* is derived from the band dispersion. The characteristics of this orbital composition promote separation of photoexcited carriers, leading to a high transfer efficiency of the catalyst. Moreover, photodegradation experiments demonstrate that the photocatalytic activity of Zn4B6O13 is approximately 5.2 times as high as that of SnO2. This study provides insights that might aid the development of novel borate-based environmental photocatalysts with superior performance.

6.
Microsc Microanal ; 23(1): 173-178, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228170

RESUMO

Formation of a nanometer-scale oxide surface layer is common when a material is exposed to oxygen-containing environment. Employing aberration-corrected analytical transmission electron microscopy and using single crystal SnSe as an example, we show that for an alloy, a second thin amorphous layer can appear underneath the outmost oxide layer. This inner amorphous layer is not oxide based, but instead originates from solid-state amorphization of the base alloy when its free energy rises to above that of the metastable amorphous state; which is a result of the composition shift due to the preferential depletion of the oxidizing species, in our case, the outgoing Sn reacting with the oxygen atmosphere.

7.
Inorg Chem ; 54(5): 2467-73, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25695506

RESUMO

Band structure engineering is an efficient technique to develop desired semiconductor photocatalysts, which was usually carried out through isovalent or aliovalent ionic substitutions. Starting from a UV-activated catalyst ZnGa2S4, we successfully exploited good visible light photocatalysts for H2 evolution by In(3+)-to-Ga(3+) and (Cu(+)/Ga(3+))-to-Zn(2+) substitutions. First, the bandgap of ZnGa2-xInxS4 (0 ≤ x ≤ 0.4) decreased from 3.36 to 3.04 eV by lowering the conduction band position. Second, Zn1-2y(CuGa)yGa1.7In0.3S4 (y = 0.1, 0.15, 0.2) provided a further and significant red-shift of the photon absorption to ∼500 nm by raising the valence band maximum and barely losing the overpotential to water reduction. Zn0.7Cu0.15Ga1.85In0.3S4 possessed the highest H2 evolution rate under pure visible light irradiation using S(2-) and SO3(2-) as sacrificial reagents (386 µmol/h/g for the noble-metal-free sample and 629 µmol/h/g for the one loaded with 0.5 wt % Ru), while the binary hosts ZnGa2S4 and ZnIn2S4 (synthesized using the same procedure) show 0 and 27.9 µmol/h/g, respectively. The optimal apparent quantum yield reached to 7.9% at 500 nm by tuning the composition to Zn0.6Cu0.2Ga1.9In0.3S4 (loaded with 0.5 wt % Ru).

8.
Inorg Chem ; 54(6): 2945-9, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25714488

RESUMO

Borates are well-known candidates for optical materials, but their potentials in photocatalysis are rarely studied. Ga(3+)-containing oxides or sulfides are good candidates for photocatalysis applications because the unoccupied 4s orbitals of Ga usually contribute to the bottom of the conducting band. It is therefore anticipated that Ga4B2O9 might be a promising photocatalyst because of its high Ga/B ratio and three-dimensional network. Various synthetic methods, including hydrothermal (HY), sol-gel (SG), and high-temperature solid-state reaction (HTSSR), were employed to prepare crystalline Ga4B2O9. The so-obtained HY-Ga4B2O9 are micrometer single crystals but do not show any UV-light activity unless modified by Pt loading. The problem is the fast recombination of photoexcitons. Interestingly, the samples obtained by SG and HTSSR methods both possess a fine micromorphology composed of well-crystalline nanometer strips. Therefore, the excited e(-) and h(+) can move to the surface easily. Both samples exhibit excellent intrinsic UV-light activities for pure water splitting without the assistance of any cocatalyst (47 and 118 µmol/h/g for H2 evolution and 22 and 58 µmol/h/g for O2 evolution, respectively), while there is no detectable activity for P25 (nanoparticles of TiO2 with a specific surface area of 69 m(2)/g) under the same conditions.

9.
Inorg Chem ; 53(5): 2364-6, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24512540

RESUMO

An open-framework gallium borate with intrinsic photocatalytic activities to water splitting has been discovered. Small inorganic molecules, H3BO3 and H3B3O6, are confined inside structural channels by multiple hydrogen bonds. It is the first example to experimentally show the structural template effect of boric acid in flux synthesis.

10.
Front Chem ; 8: 75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117895

RESUMO

The design of highly efficient and stable photocatalysts to utilize solar energy is a significant challenge in photocatalysis. In this work, a series of novel p-n heterojunction photocatalysts, Li2SnO3/g-C3N4, was successfully prepared via a facile calcining method, and exhibited superior photocatalytic activity toward the photodegradation of Rhodamine B solution under visible light irradiation as compared with pure Li2SnO3 and g-C3N4. The maximum kinetic rate constant of photocatalytic degradation of Rhodamine B within 60 min was 0.0302 min-1, and the composites still retained excellent performance after four successive recycles. Chemical reactive species trapping experiments and electron paramagnetic resonance demonstrated that hydroxyl radicals (·OH) and superoxide ions ( · O 2 - ) were the dominant active species in the photocatalytic oxidation of Rhodamine B solution, while holes (h+) only played a minor role. We demonstrated that the enhancement of the photocatalytic activity could be assigned to the formation of a p-n junction photocatalytic system, which benefitted the efficient separation of photogenerated carriers. This study provides a visible light-responsive heterojunction photocatalyst with potential applications in environmental remediation.

11.
Nanomaterials (Basel) ; 10(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878320

RESUMO

Using solar energy to remove antibiotics from aqueous environments via photocatalysis is highly desirable. In this work, a novel type-II heterojunction photocatalyst, MgSn(OH)6/SnO2, was successfully prepared via a facile one-pot in situ hydrothermal method at 220 °C for 24 h. The obtained heterojunctions were characterized via powder X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic performance was evaluated for photodegradation of tetracycline solution under ultraviolet irradiation. The initial concentration of tetracycline solution was set to be 20 mg/L. The prepared heterojunctions exhibited superior photocatalytic activity compared with the parent MgSn(OH)6 and SnO2 compounds. Among them, the obtained MgSn(OH)6/SnO2 heterojunction with MgCl2·6H2O:SnCl4·5H2O = 4:5.2 (mmol) displayed the highest photocatalytic performance and the photodegradation efficiency conversion of 91% could be reached after 60 min under ultraviolet irradiation. The prepared heterojunction maintained its performance after four successive cycles of use. Active species trapping experiments demonstrated that holes were the dominant active species. Hydroxyl radicals and superoxide ions had minor effects on the photocatalytic oxidation of tetracycline. Photoelectrochemical measurements were used to investigate the photocatalytic mechanism. The enhancement of photocatalytic activity could be assigned to the formation of a type-II junction photocatalytic system, which was beneficial for efficient transfer and separation of photogenerated electrons and holes. This research provides an in situ growth strategy for the design of highly efficient photocatalysts for environmental restoration.

12.
ACS Appl Mater Interfaces ; 9(12): 10595-10601, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28282116

RESUMO

High thermal conductivity of CoSbS-based limited its own prospect application in thermoelectric energy conversion. Solid solution is an effective approach to optimize the performance of thermoelectric materials with high lattice thermal conductivity because of the enhanced phonons scattering from disorder atoms. In this paper, we have synthesized and measured the thermoelectric properties of solid solution CoSbS1-xSex (x = 0, 0.05, 0.10, 0.15, 0.20, 0.30) series samples. The collaborative optimization (enhancing the power factors and reducing the thermal conductivities) to add zT values were realized via substitution of S atoms with the isoelectronic Se atoms in the matrix. Meanwhile, the lowest room temperature lattice thermal conductivity in CoSbS-based materials is obtained (4.72 W m-1 K-1) at present. Benefiting from the results of synergistic strategy, a zT of 0.35 was achieved at 923 K for sample CoSbS0.85Se0.15, a 59% improvement as compared with that of the pristine CoSbS. Band calculation demonstrated that CoSbS0.85Se0.15 present a similar band dispersion with CoSbS. The mechanism of point defect scattering for reducing the lattice thermal conductivity at room temperature, was also analyzed by the Callaway model. The contributions to decrease the room temperature lattice thermal conductivity from the mass and the strain fluctuation in the crystal are comparable. These results can also be extended to other high-efficiency thermoelectric materials with stiff bond and smaller Gruneisen parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA