Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(8): 4489-4495, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38369881

RESUMO

The efficient removal of radioactive iodine from an aqueous solution is largely dependent on the adsorbent materials employed. In this work, we report a calix[4]pyrrole-based nanofilm and its application for the rapid removal of iodine from water. The nanofilm was synthesized through a confined dynamic condensation of tetra hydrazide calix[4]pyrrole with 1,3,5-tri-(4-formylphenyl) aldehyde at the air/dimethyl sulfoxide (DMSO) interface. The thickness of the obtained nanofilm is ∼35 nm, enabling fast mass transfer and a high ratio of accessible binding sites for iodine. The pseudo-second-order rate constant of the nanofilm for iodine is ∼0.061 g g-1 min-1, 3 orders of magnitude higher than most reported adsorbent materials. Flow-through nanofiltration tests demonstrated that the nanofilm has an adsorption capacity of 1.48 g g-1, a high removal efficiency, and good reusability. The mechanism study revealed that the moieties of Schiff base, pyrrole, and aromatic rings play a key role for binding iodine. We believe this work provides not only a new strategy for the efficient removal of radioactive iodine from water but also new ideas for designing efficient iodine adsorbents.

2.
Anal Chem ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36633555

RESUMO

A new kind of imine bond-based fluorescent nanofilm was developed as multifunctional materials for high-performance detection and efficient removal of hydrogen chloride (HCl) and ammonia (NH3). The flexible, uniform, and photochemically stable nanofilms as prepared showed fast (<1 and <0.5 s), sensitive (<150 ppb and <1.5 ppm), and selective response to HCl and NH3, respectively, and the removal efficiencies to HCl and NH3 are 187.5 and 37.5% (w/w), respectively. A reversible earthy-red to green fluorescence color change upon adsorption of NH3 or HCl enabled visualized monitoring of the two gases in the air. Mechanism studies revealed that the adsorption of HCl is a result of hydrogen bond formation between the analyte and the imine groups. Adsorption of NH3, however, is a result of chemical reaction with the pre-adsorbed HCl. The applicability of the detection and removal strategies as developed was further verified by conducting the tests on real-life or simulated scenarios.

3.
Anal Chem ; 93(18): 7094-7101, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905230

RESUMO

Although it is widely used in industry and food products, formic acid can be dangerous owing to its corrosive properties. Accurate determination of formic acid would not only benefit its qualified uses but also be an effective way to avoid corrosion or injury from inhalation, swallowing, or touching. Herein, we present a nanofilm-based fluorescent sensor for formic acid vapor detection with a wide response range, fast response speed, and high sensitivity and selectivity. The nanofilm was synthesized at a humid air/dimethyl sulfoxide (DMSO) interface through dynamic covalent condensation between two typically designed building blocks, de-tert-butyl calix[4]arene-tetrahydrazide (CATH) and 4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetra-benzaldehyde (ETBA). The as-prepared nanofilm is uniform, flexible, fluorescent, and photochemically stable. The thickness and fluorescence intensity of the nanofilm can be facilely adjusted by varying the concentration of the building blocks and the sensing performance of the nanofilm can be optimized accordingly. Based on the nanofilm, a fluorescent sensor with a wide response range (4.4 ppt-4400 ppm) for real-time and online detection of formic acid vapor was built. With the sensor, a trace amount (0.01%) of formic acid in petroleum ether (60-90 °C) can be detected within 3 s. Besides, fluorescence quenching of the nanofilm by formic acid vapor can be visualized. It is believed that the sensor based on the nanofilm would find real-life applications in corrosion and injury prevention from formic acid.


Assuntos
Formiatos , Gases , Espectrometria de Fluorescência
4.
J Colloid Interface Sci ; 660: 513-521, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262178

RESUMO

Wearable SERS substrates have gained substantial attention for health monitoring and other applications. Current designs often rely on conventional polymer substrates, leading to discomfort and complexity due to the need of additional adhesive layers. To address the issues, we fabricate a flexible, uniform, ultrathin, transparent and porous SERS substrate via depositing Ag nanoparticles (AgNPs) onto the CdS nanowires (CdSNWs) grown on the surface of a prepared nanofilm (AgNPs-CdSNWs/nanofilm). Unlike the wearable SERS substrates reported in literature, the one presented in this work is self-adhesive to a variety of surfaces, which simplifies structure, enhances comfort and improves performance. Importantly, the new SERS substrate as developed is highly stable and reusable. Artificial sample tests revealed that the substrate showed a great enhancement factor (EF) of 4.2 × 107 and achieved a remarkable detection limit (DL) of 1.0 × 10-14 M for rhodamine 6G (R6G), which are among the highest records observed in wearable SERS substrates reported in literature. Moreover, the substrate enables at real-time and in-situ reliable monitoring of urea dynamics in human sweat and plant leaves, indicating its applicability for health analysis and in precision agriculture.


Assuntos
Nanopartículas Metálicas , Cimentos de Resina , Humanos , Nanopartículas Metálicas/química , Ureia , Prata/química , Análise Espectral Raman
5.
Adv Sci (Weinh) ; 11(12): e2307165, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225747

RESUMO

Flexible and highly ultraviolet (UV) sensitive materials garner considerable attention in wearable devices, adaptive sensors, and light-driven actuators. Herein, a type of nanofilms with unprecedented fully reversible UV responsiveness are successfully constructed. Building upon this discovery, a new system for ultra-fast, sensitive, and reliable UV detection is developed. The system operates by monitoring the displacement of photoinduced macroscopic motions of the nanofilms based composite membranes. The system exhibits exceptional responsiveness to UV light at 375 nm, achieving remarkable response and recovery times of < 0.3 s. Furthermore, it boasts a wide detection range from 2.85 µW cm-2 to 8.30 mW cm-2, along with robust durability. Qualitative UV sensing is accomplished by observing the shape changes of the composite membranes. Moreover, the composite membrane can serve as sunlight-responsive actuators for artificial flowers and smart switches in practical scenarios. The photo-induced motion is ascribed to the cis-trans isomerization of the acylhydrazone bonds, and the rapid and fully reversible shape transformation is supposed to be a synergistic result of the instability of the cis-isomers acylhydrazone bonds and the rebounding property of the networked nanofilms. These findings present a novel strategy for both quantitative and qualitative UV detection.

6.
ACS Nano ; 17(3): 1879-1905, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36715276

RESUMO

Covalent organic frameworks (COFs) are a type of crystalline organic porous material with specific features and interesting structures, including porosity, large surface area, and biocompatibility. These features enable COFs to be considered as excellent candidates for applications in various fields. Recently, COFs have been widely demonstrated as promising materials for biomedical applications because of their excellent physicochemical properties and ultrathin structures. In this review, we cover the recent progress of COF materials for applications in photodynamic therapy, gene delivery, photothermal therapy, drug delivery, bioimaging, biosensing, and combined therapies. Moreover, the critical challenges and further perspectives with regards to COFs for future biology-facing applications are also discussed.


Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Sistemas de Liberação de Medicamentos , Terapia Fototérmica , Porosidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-36753515

RESUMO

Organic radical batteries (ORBs) with radical-branched polymers as cathode materials represent a valuable alternative to meet the continuously increasing demand on energy storage. However, the low theoretical capacities of current radical-contained compounds strongly hamper their practical applications. To address this issue, a chemically robust polynitrosoarene (tris(4-nitrosophenyl)amine) with a pronounced radical property is rationally designed as an efficient cathode for ORBs. Its unique multi-nitroso structure displays remarkably reversible charge/discharge capability and a superior capacity up to 300 mA h g-1 (93% theoretical capacity) after 100 cycles at 100 mA g-1 within a broad potential window of 1.3-4.3 V (vs Li+/Li). Moreover, the ultra-long cycle life is also achieved at 1000 mA g-1 with 85% preservation of the capacity after 1000 cycles, making it the best-reported organic radical cathode material for lithium-ion batteries.

8.
Adv Mater ; : e2306414, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589261

RESUMO

The use of chiral covalent organic frameworks (COFs) as active elements in photodetectors to directly identify circularly polarized light (CPL) can meet the requirement of integration and miniaturization of the as-fabricated devices. Herein, the design and synthesis of two isoreticular chiral two-dimensional (2D) COFs (CityU-7 and CityU-8) by introducing photosensitive porphyrin-based amines (5,10,15,20-tetrakis(4-aminophenyl)porphyrin) to enhance the optical absorption and chiral aldehyde linkage (2,5-bis((S/R))-2-methylbutoxy)terephthalaldehyde) to engender chirality for direct CPL detection  are  reported. Their crystalline structures  were  confirmed by powder X-ray diffraction, Fourier-transform infrared spectroscopy, and low-dose transition electron microscopy. Employing both chiral COFs as the active layers in photodetectors, left-handed circularly (LHC) and right-handed circularly (RHC) polarized light at 405 nm can be well distinguishable with short response time, high responsivity, and satisfying detectivity. The study provides the first example on the design and synthesis of chiral COFs for direct detection of CPL.

9.
ACS Nano ; 17(23): 23903-23912, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014811

RESUMO

Persistent covalent-organic framework (COF) radicals hold important applications in magnetics and spintronics; however, their facile synthesis remains a daunting challenge. Here, three p-phenylenediacetonitrile-based COFs (named CityU-4, CityU-5, and CityU-6) were synthesized. Upon heat treatment (250 °C for CityU-4 and CityU-5 or 220 °C for CityU-6), these frameworks were brought into their persistent radical forms (no obvious changes after at least one year), together with several observable factors, including color changes, red-shifted absorption, the appearance of electron spin resonance (ESR) signals, and detectable magnetic susceptibility. The theoretical simulation suggests that after heat treatment, lower total energy and nonzero spin density are two main factors to guarantee persistent COFs radicals and polarized spin distributions. This work provides an efficient method for the preparation of persistent COF radicals with promising potentials.

10.
J Colloid Interface Sci ; 610: 368-375, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923274

RESUMO

Preparation of nanofilms which are able to reject water-soluble low molecular weight organic compounds in nanofiltration remains to be a challenge. Herein, we report a new kind of self-standing, defect-free, robust, centimeter-sized and thickness controllable calix[4]pyrrole (C[4]P)-based nanofilms with excellent molecular sieving performance in nanofiltration. The nanofilms were prepared via confined dynamic condensation of the tetra-benzoyl-hydrazine derivative of calix[4]pyrrole (CPTBH) with 1,3,5-benzenetricarboxaldehyde (BTC) at the air/dimethyl sulfoxide (DMSO) interface. Nanofiltration tests under 2 bar pressure with porous polyethylene terephthalate (PET) as the support and a CsF treated CPTBH-BTC nanofilm (∼100 nm) as the selective layer depicted a water permeance of 15 L m-2h-1 bar-1 and a methanol permeance of 45 L m-2h-1 bar-1. High rejection rates (>95%) were found in aqueous solution for most of the tested dyes and pharmaceuticals. Remarkably, the composite membrane also demonstrated good separation performance in aqueous phase to some amino acids and organic dyes with molecular weights around 200 g/mol. High-performance nanofiltration in methanol was also realized. In this case, the molecular weight cutoff value is âˆ¼ 800 g/mol. These findings showed that introduction of macrocyclic hosts is an effective way to develop nanofilms with high solvent permeance but low molecular weight cutoff value.


Assuntos
Membranas Artificiais , Pirróis , Porosidade , Solventes , Água
11.
ACS Appl Mater Interfaces ; 13(45): 54561-54569, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726062

RESUMO

Substrates play crucial roles for the sensing performances of fluorescent films owing to their effect on the formation of a fluorescent adlayer. However, no such film has been developed through synthesizing a substrate with a defined structure. We herein report a kind of self-standing, uniform, and thickness tunable pillar[5]arene-based nanofilms to serve as substrates for fabricating fluorescent sensing films. In comparison with a glass plate, the pillar[5]arene-based nanofilms can ensure spatial and electronic isolation of immobilized fluorophores and circumvent aggregation-caused quenching in a film state. For conceptual proof, a formic acid fluorescent sensing film was developed through simple loading of a fluorophore, a 4-azetidine-1,8-naphthalimide derivative of cholesterol (NA-Ch), onto the prepared nanofilm. Sensing performance studies demonstrated that the fluorescent film showed a sensitive, fast, and highly selective response to formic acid in air with a detection limit of lower than 2.8 mg m-3 and a response time of less than 3 s. Moreover, the sensing is fully reversible and highly repeatable. Further studies showed that the film sensor can be used for fast determination of methanol acidity via vapor sampling. Clearly, innovation of substrates with defined structures can be taken as an effective and efficient way to develop new sensing films via combination with known fluorophores.

12.
ACS Appl Mater Interfaces ; 13(2): 3336-3348, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33356087

RESUMO

The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm2) were constructed. The thickness and permeability of the film systems can be fine-tuned by varying the precursor concentration or by changing another building block. A typical nanofilm (C[4]P-TFB, ∼67 nm) depicted high water flux (39.9 L m-2 h-1 under 1 M Na2SO4), narrow molecular weight cut-off value (∼200 Da), and promising antifouling properties in the forward osmosis (FO) process. In addition, the nanofilms are stable over a wide pH range and tolerable to different organic solvents. Interestingly, the introduction of C[4]P endowed the nanofilms with both outstanding mechanical properties and unique group-selective separation capability, laying the foundation for wastewater treatment and pharmaceutical concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA