RESUMO
Diabetic kidney disease is the most common primary disease of end-stage kidney disease globally; however, a sensitive and accurate biomarker to predict this disease remains awaited. microRNAs are endogenous single-stranded noncoding RNAs that have intervened in different post-transcriptional regulations of various cellular biological functions. Previous literatures have reported its potential role in the pathophysiology of diabetic kidney disease, including regulation of Transforming Growth Factor-ß1-mediated fibrosis, extracellular matrix and cell adhesion proteins, cellular hypertrophy, growth factor, cytokine production, and redox system activation. Urinary microRNAs have emerged as a novel, non-invasive liquid biopsy for disease diagnosis. In this review, we describe the available experimental and clinical evidence of urinary microRNA in the context of diabetic kidney disease and discuss the future application of microRNA in routine practice.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Humanos , Nefropatias Diabéticas/metabolismo , MicroRNAs/genética , Rim/patologia , Regulação da Expressão Gênica , Expressão Gênica , Diabetes Mellitus/patologiaRESUMO
Background: Although associations between low protein diet (LPD) and changes of gut microbiota have been reported; however, systematic discernment of the effects of LPD on diet-microbiome-host interaction in patients with chronic kidney disease (CKD) is lacking. Methods: We searched PUBMED and EMBASE for articles published on changes of gut microbiota associated with implementation of LPD in CKD patients until July 2021. Independent researchers extracted data and assessed risks of bias. We conducted meta-analyses of combine p-value, mean differences and random effects for gut microbiota and related metabolites. Study heterogeneity was measured by Tau2 and I2 statistic. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Five articles met inclusion criteria. The meta-analyses of gut microbiota exhibited enrichments of Lactobacillaceae (meta-p= 0.010), Bacteroidaceae (meta-p= 0.048) and Streptococcus anginosus (meta-p< 0.001), but revealed depletion of Bacteroides eggerthii (p=0.017) and Roseburia faecis (meta-p=0.019) in LPD patients compared to patients undergoing normal protein diet. The serum IS levels (mean difference: 0.68 ug/mL, 95% CI: -8.38-9.68, p= 0.89) and pCS levels (mean difference: -3.85 ug/mL, 95% CI: -15.49-7.78, p < 0.52) did not change between groups. We did not find significant differences on renal function associated with change of microbiota between groups (eGFR, mean difference: -7.21 mL/min/1.73 m2, 95% CI: -33.2-18.79, p= 0.59; blood urea nitrogen, mean difference: -6.8 mg/dL, 95% CI: -46.42-32.82, p= 0.74). Other clinical (sodium, potassium, phosphate, albumin, fasting sugar, uric acid, total cholesterol, triglycerides, C-reactive protein and hemoglobin) and anthropometric estimates (body mass index, systolic blood pressure and diastolic blood pressure) did not differ between the two groups. Conclusions: This systematic review and meta-analysis suggested that the effects of LPD on the microbiota were observed predominantly at the families and species levels but minimal on microbial diversity or richness. In the absence of global compositional microbiota shifts, the species-level changes appear insufficient to alter metabolic or clinical outputs.
Assuntos
Dieta com Restrição de Proteínas , Microbioma Gastrointestinal/fisiologia , Insuficiência Renal Crônica/microbiologia , Disbiose/epidemiologia , Disbiose/etiologia , Humanos , Internacionalidade , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/epidemiologiaRESUMO
Dynamic combined training is a crucial component in treating musculoskeletal conditions to increase muscle strength and improve functional ability. This randomized control trial aimed to examine the effect of dynamic combined training on muscle strength and contractile rate of force development (RFD) in patients with osteoporosis (OP) and knee osteoarthritis (KOA). 58 participants with OP or KOA were randomly assigned to a control group (CG) (CGOP, n = 12; CGKOA, n = 15) or training group (TG) (TGOP, n = 14; TGKOA, n = 17). The training group participated in a 12-week, three-days-per-week supervised program consisting of stretching and warm-up exercises (10 min), hydraulic resistance training (40 min), and cool-down and relaxation exercises (10 min). All participants were evaluated at baseline and post-training. The maximal voluntary contraction (MVC) and contractile RFD at 0-200 ms increased significantly in middle-aged and older patients with OP. As for KOA, the dynamic combined training program was effective in improving the muscle strength. The maximal voluntary contraction (MVC) and contractile RFD at 0-200 ms increased significantly (by 29.22%, P = .000 and 27.25%, P = .019, respectively) in middle-aged and older patients with OP. In the KOA group, MVC and contractile RFD improved but did not reach statistical significance. The dynamic combined training program is effective for health promotion in older adults with OP or KOA.
Assuntos
Osteoartrite do Joelho , Osteoporose , Treinamento Resistido , Idoso , Humanos , Pessoa de Meia-Idade , Contração Muscular , Força Muscular , Músculo Esquelético , Osteoartrite do Joelho/terapia , Osteoporose/terapiaRESUMO
We propose a realization of the lattice-symmetry-assisted second-order topological superconductors with corner Majorana zero modes (MZM) based on two-dimensional topological insulators (2DTI). The lattice symmetry can naturally lead to the anisotropic coupling of edge states along different directions to the in-plane magnetic field and conventional s-wave pairings, thus leading to a single MZM located at the corners for various lattice patterns. In particular, we focus on the 2DTI with D_{3d} lattice symmetry and found different types of gap opening for the edge states along the armchair and zigzag edges in a broad range of parameters. As a consequence, a single MZM exists at the corner between the zigzag and armchair edges, and is robust against weakly broken lattice symmetry. We propose to realize such corner MZMs in a variety of polygon patterns, such as triangles and quadrilaterals. We further show their potentials in building the Majorana network through constructing the Majorana Y junction under an in-plane magnetic field.
RESUMO
This study investigated the efficacy and safety of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in relapse prevention of bipolar disorder (BD), addressing the shortcomings of current medications. Thirty-one stable BD patients were randomized to receive n-3 PUFAs or placebo for 6 months and intergroup differences in the incidence of the recurrence of bipolar depression were assessed. Differences in depression severity, manic symptoms, and routine biochemical parameters were also assessed. Interestingly, n-3 PUFAs demonstrated a favorable preventive effect on bipolar depression recurrence (p=0.005; Log-Rank) and reduced depression severity compared to placebo, and were well-tolerated, suggesting their potential as a safe prophylactic therapy for BD.
Assuntos
Transtorno Bipolar , Ácidos Graxos Ômega-3 , Humanos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/diagnóstico , Projetos Piloto , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , RecidivaRESUMO
There is growing evidence that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with increased risks of psychiatric sequelae. Depression, anxiety, cognitive impairments, sleep disturbance, and fatigue during and after the acute phase of COVID-19 are prevalent, long-lasting, and exerting negative consequences on well-being and imposing a huge burden on healthcare systems and society. This current review presented timely updates of clinical research findings, particularly focusing on the pathogenetic mechanisms underlying the neuropsychiatric sequelae, and identified potential key targets for developing effective treatment strategies for long COVID. In addition, we introduced the Formosa Long COVID Multicenter Study (FOCuS), which aims to apply the inflammation theory to the pathogenesis and the psychosocial and nutrition treatments of post-COVID depression and anxiety.
RESUMO
Background: Animal studies have demonstrated that an oral absorbent AST-120 modulates gut environment. However, this phenomenon remains unclear in humans. This study aimed to assess the effects of AST-120 on the gut microbiota, related functional capability and metabolomic profiling in advanced chronic kidney diseases (CKD) patients. Methods: Eight advanced CKD patients with AST-120 (CKD+AST), 24 CKD patients (CKD), and 24 non-CKD controls were enrolled. We analyzed 16S rRNA pyrosequencing of feces and serum metabolomics profiling. Results: The CKD+AST group exhibited dispersed microbial community structure (ß-diversity, p < 0.001) compared to other groups. The relative abundances of at least 16 genera were significantly different amongst the three groups. Increases of fatty acids-producing bacteria (Clostridium_sensu_stricto_1, Ruminococcus_2, Eubacterium_nodatum and Phascolarctobacterium) associated with elevated serum acetic acid and octanoic acid levels were found in CKD+AST group. Analysis of microbial gene function indicated that pathway modules relevant to metabolisms of lipids, amino acids and carbohydrates were differentially enriched between CKD+AST and CKD groups. Specifically, enrichments of gene markers of the biosynthesis of fatty acids were noted in the CKD+AST group. Conclusion: Advanced CKD patients exhibited significant gut dysbiosis. AST-120 can partially restore the gut microbiota and intervenes in a possible signature of short- and medium-chain fatty acids metabolism.
RESUMO
Rather than using wooden sticks to simulate the breakage of trees in high winds as in most research, we employ fresh samples from camphor and Formosa gum with branches and leaves to certify the crucial role of the tree crown. By using a blowdown wind tunnel with a maximum wind speed of 50 m/s, we purposely reduce the number of leaves and show that the drag force will drop by as much as two thirds when half pruned. Based on real observations, we model the leaf by an open and full cone in the presence of light and strong winds, and calculate how their corresponding cross-sectional area A and drag force F vary with wind speed v. Different slopes before and after the formation of a full cone are predicted and confirmed when these two quantities are plotted in full-log scale. Compared to the empirical value, our simple model gave α=2/5 and 2/3 for Aâv^{-α} and ß=4/5 and 2/3 for Fâv^{ß} at low and high winds. Discrepancies can be accounted for by including further details, such as the reorientation of open cones and the movement of branches.
RESUMO
The relationship between change of gut microbiota and host serum metabolomics associated with low protein diet (LPD) has been unraveled incompletely in CKD patients. Fecal 16S rRNA gene sequencing and serum metabolomics profiling were performed. We reported significant changes in the ß-diversity of gut microbiota in CKD patients having LPD (CKD-LPD, n = 16). We identified 19 genera and 12 species with significant differences in their relative abundance among CKD-LPD patients compared to patients receiving normal protein diet (CKD-NPD, n = 27) or non-CKD controls (n = 34), respectively. CKD-LPD had a significant decrease in the abundance of many butyrate-producing bacteria (family Lachnospiraceae and Bacteroidaceae) associated with enrichment of functional module of butanoate metabolism, leading to concomitant reduction in serum levels of SCFA (acetic, heptanoic and nonanoic acid). A secondary bile acid, glyco λ-muricholic acid, was significantly increased in CKD-LPD patients. Serum levels of indoxyl sulfate and p-cresyl sulfate did not differ among groups. The relationship between abundances of microbes and metabolites remained significant in subset of resampling subjects of comparable characteristics. Enrichment of bacterial gene markers related to D-alanine, ketone bodies and glutathione metabolism was noted in CKD-LPD patients. Our analyses reveal signatures and functions of gut microbiota to adapt dietary protein restriction in renal patients.
Assuntos
Dieta com Restrição de Proteínas/métodos , Microbioma Gastrointestinal/fisiologia , Metaboloma/fisiologia , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/microbiologia , Adaptação Fisiológica , Idoso , Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , RNA Ribossômico 16S , Insuficiência Renal Crônica/metabolismoRESUMO
This study aimed to analyze the influence of H. pylori infection on insulin resistance and metabolic syndrome (MS) by multivariate analysis of a community-based cohort study. From January 2013 to February 2014,811 subjects were enrolled in a community-based cohort study from the northeastern region of Taiwan. All subjects received a demographic survey and blood tests, including an H. pylori antibody test, liver biochemistry tests, lipid profiles, sugar/insulin levels for Homeostatic model assessment (HOMA-IR index), and measurements of adipokines and inflammatory cytokines. A total of 264 men and 547 women were included in this study. The mean age was 59.2 ± 12.7 years. Subjects seropositive for H. pylori antibodies exhibited higher rates of hypertension, an increased incidence of a HOMA-IR index > 2.5 and a higher level of tumor necrosis factor-α than those without H. pylori antibodies. We found a significant difference in the presence of H. pylori antibodies between subjects with MS and those without MS (76.7% vs. 53.7%, p = 0.007) among subjects < 50 y/o. A HOMA-IR index >2.5, H. pylori antibody presence and leptin were predictors for MS in subjects < 50 y/o. The estimated odds ratio of MS for a subject with H. pylori antibodies was 3.717 (95% CI = 1.086-12.719) times that of a subject without H. pylori antibodies. In addition, no difference in H. pylori antibody status was detected for MS prediction in subjects that were ⧠50 y/o (p = 0.861). In conclusion, subjects with H. pylori antibodies had a higher incidence of a HOMA-IR >2.5 than those without H pylori antibodies. For subjects aged < 50 y/o, the H. pylori antibody was a predictor for MS.