RESUMO
Dexmedetomidine (Dex) was reported to reduce ischemia-reperfusion (I/R) injury in kidney and brain tissues. Thus, we aimed to study the role and mechanism of Dex in cerebral I/R injury by inhibiting hypoxia-inducible factor-1α (HIF-1α) and apoptosis. First, I/R injury models were established. Six groups were assigned after different treatments: sham, I/R, I/R+Dex, I/R+2-methoxyestradiol (2ME2) (HIF-1α inhibitor), I/R+CoCl 2 (HIF-1α activator), and I/R+Dex+CoCl 2 groups. Neurological function, cerebral infarction volume, survival, and apoptosis of brain cells were then analyzed. Besides, immunohistochemistry and Western blot analysis were used to detect the expression of HIF-1α, BCL-2[B-cell leukemia/lymphoma 2] adenovirus E1B interacting protein 3 (BNIP3), B-cell leukemia/lymphoma 2 (BCL2), BCL2[B-cell leukemia/lymphoma 2] associated X (Bax), and cleaved-caspase3 proteins in brain tissues. I/R rats showed cerebral infarction, increased neurological function score, number of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL)-positive cells and HIF-1α-positive cells as well as decreased neurons. Inhibition of HIF-1α can reduce the apoptosis induced by I/R, and overexpression of HIF-1α can aggravate apoptosis in brain tissue of I/R rats. Furthermore, activation of HIF-1α expression blocks the inhibitory effect of Dex on neuronal apoptosis in I/R rats. Dex may inhibit the neuronal apoptosis of I/R rats by inhibiting the HIF-1α pathway and then improve the cerebral I/R injury in rats.
RESUMO
Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.
Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Proteômica/métodos , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Grupo dos Citocromos b/química , Ferritinas/química , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Proteínas Ribossômicas/química , Células THP-1RESUMO
Although the number of sequenced prokaryotic genomes is growing rapidly, experimentally verified annotation of prokaryotic genome remains patchy and challenging. To facilitate genome annotation efforts for prokaryotes, we developed an open source software called GAPP for genome annotation and global profiling of post-translational modifications (PTMs) in prokaryotes. With a single command, it provides a standard workflow to validate and refine predicted genetic models and discover diverse PTM events. We demonstrated the utility of GAPP using proteomic data from Helicobacter pylori, one of the major human pathogens that is responsible for many gastric diseases. Our results confirmed 84.9% of the existing predicted H. pylori proteins, identified 20 novel protein coding genes, and corrected four existing gene models with regard to translation initiation sites. In particular, GAPP revealed a large repertoire of PTMs using the same proteomic data and provided a rich resource that can be used to examine the functions of reversible modifications in this human pathogen. This software is a powerful tool for genome annotation and global discovery of PTMs and is applicable to any sequenced prokaryotic organism; we expect that it will become an integral part of ongoing genome annotation efforts for prokaryotes. GAPP is freely available at https://sourceforge.net/projects/gappproteogenomic/.
Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteogenômica/métodos , Anotação de Sequência Molecular , Processamento de Proteína Pós-Traducional , SoftwareRESUMO
Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies.
Assuntos
Arsênio/farmacologia , Proteínas de Transporte/análise , Hexoquinase/antagonistas & inibidores , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Arsênio/metabolismo , Trióxido de Arsênio , Arsenicais/farmacologia , Proteínas de Transporte/metabolismo , Biologia Computacional , Glicólise , Humanos , Metabolômica , Dados de Sequência Molecular , Óxidos/farmacologia , ProteomaRESUMO
We describe an integrated workflow for proteogenomic analysis and global profiling of posttranslational modifications (PTMs) in prokaryotes and use the model cyanobacterium Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002) as a test case. We found more than 20 different kinds of PTMs, and a holistic view of PTM events in this organism grown under different conditions was obtained without specific enrichment strategies. Among 3,186 predicted protein-coding genes, 2,938 gene products (>92%) were identified. We also identified 118 previously unidentified proteins and corrected 38 predicted gene-coding regions in the Synechococcus 7002 genome. This systematic analysis not only provides comprehensive information on protein profiles and the diversity of PTMs in Synechococcus 7002 but also provides some insights into photosynthetic pathways in cyanobacteria. The entire proteogenomics pipeline is applicable to any sequenced prokaryotic organism, and we suggest that it should become a standard part of genome annotation projects.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica , Synechococcus/fisiologiaRESUMO
As the female reproductive part of a flower, the pistil consists of the ovary, style, and stigma, and is a critical organ for the process from pollen recognition to fertilization and seed formation. Previous studies on pollen-pistil interaction mainly focused on gene expression changes with comparative transcriptomics or proteomics method. However, studies on protein PTMs are still lacking. Here we report a phosphoproteomic study on mature pistil of rice. Using IMAC enrichment, hydrophilic interaction chromatography fraction and high-accuracy MS instrument (TripleTOF 5600), 2347 of high-confidence (Ascore ≥ 19, p ≤ 0.01), phosphorylation sites corresponding to 1588 phosphoproteins were identified. Among them, 1369 phosphorylation sites within 654 phosphoproteins were newly identified; 41 serine phosphorylation motifs, which belong to three groups: proline-directed, basophilic, and acidic motifs were identified after analysis by motif-X. Two hundred and one genes whose phosphopeptides were identified here showed tissue-specific expression in pistil based on information mining of previous microarray data. All MS data have been deposited in the ProteomeXchange with identifier PXD000923 (http://proteomecentral.proteomexchange.org/dataset/PXD000923). This study will help us to understand pistil development and pollination on the posttranslational level.
Assuntos
Flores/química , Oryza/química , Fosfoproteínas/análise , Proteínas de Plantas/análise , Sequência de Aminoácidos , Flores/metabolismo , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Oryza/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Proteômica/métodos , Alinhamento de SequênciaRESUMO
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification used in signal transduction to control cell growth, proliferation, and stress responses. However, little is known about its extent and function in diatoms. Phaeodactylum tricornutum is a unicellular marine diatom that has been used as a model organism for research on diatom molecular biology. Although more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted in P. tricornutum, no phosphorylation event has so far been revealed by classical biochemical approaches. Here, we performed a global phosphoproteomic analysis combining protein/peptide fractionation, TiO(2) enrichment, and LC-MS/MS analyses. In total, we identified 264 unique phosphopeptides, including 434 in vivo phosphorylated sites on 245 phosphoproteins. The phosphorylated proteins were implicated in the regulation of diverse biological processes, including signaling, metabolic pathways, and stress responses. Six identified phosphoproteins were further validated by Western blotting using phospho-specific antibodies. The functions of these proteins are discussed in the context of signal transduction networks in P. tricornutum. Our results advance the current understanding of diatom biology and will be useful for elucidating the phosphor-relay signaling networks in this model diatom.
Assuntos
Proteínas de Bactérias/metabolismo , Diatomáceas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sítios de Ligação , Western Blotting , Cromatografia Líquida , Redes e Vias Metabólicas , Modelos Biológicos , Fosfopeptídeos/metabolismo , Fosforilação , Transdução de Sinais , Estresse Fisiológico , Espectrometria de Massas em TandemRESUMO
Herein, a series of water-soluble supramolecular inclusion complexes (ICs) probes were prepared using cyclodextrins (CDs) and fraxetin (FRA) to detect nicotine (NT) with high selectivity in vitro and in vivo. The FRA/CD ICs prepared through the saturated solution method exhibited excellent water solubility, stability, and biocompatibility. A clear host-guest inclusion model was provided by the theoretical calculations. The investigation revealed that NT was able to enter into the cavities of FRA/ß-CD IC and FRA/γ-CD IC, and further formed charge transfer complexes with FRA in the CD cavities, resulting in a rapid and highly selective fluorescence-enhanced response with the lowest detection limits of 1.9 × 10-6 M and 9.7 × 10-7 M, and the linear response ranged from 0.02 to 0.3 mM and 0.01-0.05 mM, respectively. The IC probes showed good anti-interference performance to common interferents or different pH environments, with satisfactory reproducibility and repeatability of response to NT. Furthermore, the potentiality of the probes was confirmed through fluorescence imaging experiments using human lung cancer cells and the lung tissue of mice. This study offers a fresh perspective for detecting NT in environmental and biomedical analysis.
Assuntos
Ciclodextrinas , Animais , Camundongos , Humanos , Ciclodextrinas/química , Nicotina , Reprodutibilidade dos Testes , Água/química , SolubilidadeRESUMO
Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium Synechococcus sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 Synechococcus sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO2 enrichment, and LC-MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria.
Assuntos
Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Serina/metabolismo , Synechococcus/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Bactérias/metabolismo , Ontologia Genética , Fosforilação , Fotossíntese/fisiologia , Transdução de SinaisRESUMO
OBJECTIVE: To observe the effects of neural stem cells (NSC) plus self-assembly isoleucine-lysine-valine-alanine-valine (IKVAV) nanofiber gel transplantation on the promotion of function recovery of spinal cord injury (SCI) in rats. METHODS: A total of 230 SD rats were randomized into gel, NSC, NSC plus self-assembly IKVAV nanofiber gel transplantation, normal saline and sham-operation groups. Function repair was evaluated by bundle branch block (BBB) score, immunofluorescence and Western blot respectively at Day 1, 3, 5, 7, 14, 28, 56 and 92 post-operation. RESULTS: There were statistically significant differences among bundle branch block (BBB) scores of different treatment groups (P < 0.01). Moreover, statistical significance existed between each treatment group and combined transplantation group (P = 0.000). The expression of glial fibrillary acidic protein in combined transplantation group (rats with spinal injury) was lower than that in other treatment groups (except for sham operation) and the expression of NF-200 in this group was higher than that in other treatment groups (except for sham operation). Significant differences existed in the expressions of brain-derived neurotrophic factor and nerve growth factor between combined transplantation and other treatment groups (P < 0.01). CONCLUSION: Transplantation with IKVAV nanofiber gel, NSC and NSC plus self-assembly IKVAV nanofiber gel may promote the repair of SCI in rats. But the method of NSC plus self-assembly IKVAV nanofiber gel is more effective.
Assuntos
Laminina/uso terapêutico , Células-Tronco Neurais/transplante , Fragmentos de Peptídeos/uso terapêutico , Traumatismos da Medula Espinal/cirurgia , Animais , Géis/uso terapêutico , Masculino , Nanofibras , Ratos , Ratos Sprague-Dawley , Recuperação de Função FisiológicaRESUMO
Diatoms are unicellular eukaryotic phytoplankton that account for approximately 20% of global carbon fixation and 40% of marine primary productivity; thus, they are essential for global carbon biogeochemical cycling and climate. The availability of ten diatom genome sequences has facilitated evolutionary, biological and ecological research over the past decade; however, a complimentary map of the diatom proteome with direct measurements of proteins and peptides is still lacking. Here, we present a proteome map of the model marine diatom Thalassiosira pseudonana using high-resolution mass spectrometry combined with a proteogenomic strategy. In-depth proteomic profiling of three different growth phases and three nutrient-deficient samples identified 9526 proteins, accounting for ~ 81% of the predicted protein-coding genes. Proteogenomic analysis identified 1235 novel genes, 975 revised genes, 104 splice variants and 234 single amino acid variants. Furthermore, our quantitative proteomic analysis experimentally demonstrated that a considerable number of novel genes were differentially translated under different nutrient conditions. These findings substantially improve the genome annotation of T. pseudonana and provide insights into new biological functions of diatoms. This relatively comprehensive diatom proteome catalog will complement available diatom genome and transcriptome data to advance biological and ecological research of marine diatoms. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00161-y.
RESUMO
OBJECTIVE: To detect the expression of telomerase in glial scar and its correlation with glial scar. METHODS: There were 120 Sprague Dawley rats were randomly divided into non-interference group of telomerase, interference group of telomerase and control group. Non-interference group and interference group were for spinal cord injury, which adopted Allen's Weight Dropping to make molding; control group was for sham operation to open the vertebral plate and expose spinal marrow, in which spinal cord injury would not be caused. The expression of telomerase and glial fibrillary acidic profein (GFAP) was detected by PCR-ELISA and Western blot, and the formation of glial scar was observed by immunofluorescence on the 1st, 3rd, 5th, 7th, 14th, 28th, 42 th and 56th day after the spinal injury, and analyzed its relativity. RESULTS: The expression of telomerase in non-interference group was (0.180 ± 0.004 - 1.217 ± 0.072), which was significantly higher than those in interference group (0.028 ± 0.007 - 0.092 ± 0.004, χ(2) = 28.753 - 37.518, P < 0.05) and control group (0.072 ± 0.007 - 0.075 ± 0.004, χ(2) = 18.618 - 41.093, P < 0.05) at all the time, with statistical significance. The expression of GFAP in non-interference group was (1.98 ± 0.15 - 19.40 ± 0.55) which was significantly higher than those in interference group (1.10 ± 0.13 - 16.64 ± 1.02, χ(2) = 14.538 - 37.366, P < 0.05) and control group (0.44 ± 0.05 - 0.48 ± 0.04, χ(2) = 16.733 - 34.041, P < 0.05) at all the time, with statistical significance. The expression of GFAP showed a linear correlation with that of telomerase in non-interference group, and with statistical differences (r = 0.755, P < 0.01). The expression of telomerase in interference group and control group were always negative. Glial scar observed by immunofluorescence in non-interference group was heavier than that in interference group, and control group showed no formation of glial scar. CONCLUSIONS: Telomerase shows a dynamic expression in glial scar and has positive correlational linear relationship with GFAP which shows the formation of glial scar. And the telomerase may be an important factor in promoting the formation of glial scar.
Assuntos
Cicatriz/enzimologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia , Telomerase/metabolismo , Animais , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/enzimologia , Neuroglia/patologia , Ratos , Ratos Sprague-DawleyRESUMO
The pathogenesis of lumbar disc degeneration is extremely complex, and the expression and role of telomerase in degenerative lumbar disc tissues remains unclear. The aim of the present study was to detect telomerase expression in nucleus pulposus tissues of degenerative lumbar discs and to explore the correlation between telomerase expression and other factors typical of disc degeneration. A total of 8 patients with degenerative nucleus pulposus were included as the experimental group and compared with 8 control patients without evident lumbar disc degeneration. The expression of telomerase in nucleus pulposus tissues was detected by immunohistochemical staining. ELISA was performed to determine the differential expression of telomerase, type II collagen and chondroitin sulfate between the two groups. In addition, a correlation analysis was performed to form associations between these factors. Finally, 5 cases in the experimental group and 5 in the control group were involved in the analysis. Immunohistochemistry results showed that telomerase expression in the experimental group was significantly lower compared to the control group and the percentage in the unit field of view showed significant differences between the two groups (P<0.05). Similarly, the ELISA test results showed lower expression levels of telomerase, type II collagen and chondroitin sulfate in the experimental group when compared with the control group (P<0.05). The correlation analysis revealed that telomerase was positively correlated with type II collagen and chondroitin sulfate (correlation coefficients, 0.673 and 0.528, respectively; P<0.01). In conclusion, telomerase is involved in the degeneration process of nucleus pulposus tissue in lumbar discs and has a positive correlation with other factors typically associated with degeneration.