Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754819

RESUMO

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Assuntos
Neurônios/metabolismo , Neutrófilos/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Botulínicas Tipo A/administração & dosagem , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Caspase 1/deficiência , Caspase 1/genética , Diterpenos/farmacologia , Fasciite Necrosante/etiologia , Fasciite Necrosante/patologia , Fasciite Necrosante/veterinária , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neutrófilos/imunologia , Dor/etiologia , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/veterinária , Streptococcus pyogenes/metabolismo , Estreptolisinas/imunologia , Estreptolisinas/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
2.
Proc Natl Acad Sci U S A ; 117(26): 14926-14935, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554495

RESUMO

Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.


Assuntos
Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linhagem Celular , Citocinas/imunologia , Humanos , Lipocalinas/genética , Lipocalinas/imunologia , Conformação Molecular , Piperidinas/química , Piperidinas/farmacologia , Receptores de Antígenos Quiméricos/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/imunologia , Linfócitos T/efeitos dos fármacos
3.
Nucleic Acids Res ; 45(13): 7602-7614, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28641400

RESUMO

Protein-based methods of siRNA delivery are capable of uniquely specific targeting, but are limited by technical challenges such as low potency or poor biophysical properties. Here, we engineered a series of ultra-high affinity siRNA binders based on the viral protein p19 and developed them into siRNA carriers targeted to the epidermal growth factor receptor (EGFR). Combined in trans with a previously described endosome-disrupting agent composed of the pore-forming protein Perfringolysin O (PFO), potent silencing was achieved in vitro with no detectable cytotoxicity. Despite concerns that excessively strong siRNA binding could prevent the discharge of siRNA from its carrier, higher affinity continually led to stronger silencing. We found that this improvement was due to both increased uptake of siRNA into the cell and improved pharmacodynamics inside the cell. Mathematical modeling predicted the existence of an affinity optimum that maximizes silencing, after which siRNA sequestration decreases potency. Our study characterizing the affinity dependence of silencing suggests that siRNA-carrier affinity can significantly affect the intracellular fate of siRNA and may serve as a handle for improving the efficiency of delivery. The two-agent delivery system presented here possesses notable biophysical properties and potency, and provide a platform for the cytosolic delivery of nucleic acids.


Assuntos
RNA Interferente Pequeno/administração & dosagem , Proteínas de Ligação a RNA/administração & dosagem , Sequência de Aminoácidos , Fenômenos Biofísicos , Linhagem Celular , Citosol/metabolismo , Sistemas de Liberação de Medicamentos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Marcação de Genes/métodos , Humanos , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/farmacocinética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/farmacocinética
4.
J Biol Chem ; 291(43): 22496-22508, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27582495

RESUMO

The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Temperatura Alta , Sulfolobus solfataricus/química , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Animais , Proteínas Arqueais/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Estabilidade Proteica , Sulfolobus solfataricus/genética
5.
Mol Pharm ; 12(6): 1992-2000, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25881713

RESUMO

Perfringolysin O (PFO) is a member of the cholesterol-dependent cytolysin (CDC) family of bacterial pore-forming proteins, which are highly efficient in delivering exogenous proteins to the cytoplasm. However, the indiscriminate and potent cytotoxicity of PFO limits its practical use as an intracellular delivery system. In this study, we describe the design and engineering of a bispecific, neutralizing antibody against PFO, which targets reversibly attenuated PFO to endocytic compartments via receptor-mediated internalization. This PFO-based system efficiently mediated the endosomal release of a co-targeted gelonin construct with high specificity and minimal toxicity in vitro. Consequently, the therapeutic window of PFO was improved by more than 5 orders of magnitude. Our results demonstrating that the activity of pore-forming proteins can be controlled by antibody-mediated neutralization present a novel strategy for utilizing these potent membrane-lytic agents as a safe and effective intracellular delivery vehicle.


Assuntos
Anticorpos Neutralizantes/química , Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Biológicos , Perforina/química
6.
Methods Mol Biol ; 2491: 105-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482187

RESUMO

Yeast surface display is a robust platform for obtaining binders with high affinity. Kinetic competition screening is an effective method for maturing the affinity of binders with strong starting affinities, or when dissociation kinetics are a key consideration for the protein of interest. In this chapter, we describe detailed protocols for setting up and performing a kinetic competition screen. The duration of competition is determined based on the dissociation rate constant of the parental clone measured on the yeast surface. This methodology was successfully used to improve the affinity of a viral double-stranded RNA binding protein with starting affinity in the sub-nanomolar range.


Assuntos
Pesquisa , Saccharomyces cerevisiae , Citometria de Fluxo/métodos , Cinética , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Nat Neurosci ; 25(2): 168-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931070

RESUMO

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.


Assuntos
Antraz , Bacillus anthracis , Toxinas Bacterianas , Células-Tronco Pluripotentes Induzidas , Animais , Antraz/microbiologia , Antraz/terapia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Gânglios Espinais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Nociceptores/metabolismo , Dor , Receptores de Peptídeos/metabolismo
8.
Front Immunol ; 12: 642373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413846

RESUMO

Bacterial products are able to act on nociceptive neurons during pathogenic infection. Neurogenic inflammation is an active part of pain signaling and has recently been shown to impact host-pathogen defense. Bacillus anthracis Edema Toxin (ET) produces striking edema in peripheral tissues, but the cellular mechanisms involved in tissue swelling are not completely understood. Here, we find that nociceptive neurons play a role in ET-induced edema and inflammation in mice. Subcutaneous footpad infection of B. anthracis Sterne caused ET-dependent local mechanical allodynia, paw swelling and body weight gain. Subcutaneous administration of ET induced paw swelling and vascular leakage, the early phases of which were attenuated in the absence of Trpv1+ or Nav1.8+ nociceptive neurons. Nociceptive neurons express the anthrax toxin receptor ANTXR2, but this did not mediate ET-induced edema. ET induced local cytokine expression and neutrophil recruitment, which were dependent in part on Trpv1+ nociceptive neurons. Ablation of Trpv1+ or Nav1.8+ nociceptive neurons also attenuated early increases in paw swelling and body weight gain during live B. anthracis infection. Our findings indicate that nociceptive neurons play an active role in inflammation caused by B. anthracis and Edema Toxin to potentially influence bacterial pathogenesis.


Assuntos
Antraz/complicações , Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Inflamação/etiologia , Nociceptores/metabolismo , Animais , Antraz/fisiopatologia , Bacillus anthracis , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/efeitos dos fármacos
9.
J Mol Biol ; 429(5): 587-605, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28065740

RESUMO

Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases.


Assuntos
Encéfalo/microbiologia , Neurônios/microbiologia , Transdução de Sinais , Animais , Bacteroides fragilis/patogenicidade , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/microbiologia , Clostridium perfringens/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Lipopolissacarídeos/toxicidade , Macrolídeos/toxicidade , Mycobacterium ulcerans/patogenicidade , Neurônios/metabolismo , Staphylococcus aureus/patogenicidade , Transmissão Sináptica , Toxina Tetânica/toxicidade
10.
Nat Chem ; 8(2): 120-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791894

RESUMO

Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.


Assuntos
Fenômenos Biológicos , Cisteína/química , Proteínas/química , Catálise , Humanos
11.
Cell Rep ; 17(10): 2503-2511, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926855

RESUMO

Numerous synergistic cancer immunotherapy combinations have been identified, but the effects of relative dose timing are rarely considered. In established syngeneic mouse tumor models, we found that staggering interferon-α (IFNα) administration after, rather than before or simultaneously with, serum-persistent interleukin-2 (IL-2) and tumor-specific antibody significantly increased long-term survival. Successful combination therapy required IFNα-induced activation of cross-presenting CD8α+ dendritic cells (DCs) following the release of antigenic tumor debris by the IL-2- and antibody-mediated immune response. Due to decreased phagocytic ability post-maturation, DCs activated too early captured less antigen and could not effectively prime CD8+ T cells. Temporally programming DC activation to occur after tumoricidal activity enhanced tumor control by multiple distinct combination immunotherapies, highlighting dose schedule as an underappreciated factor that can profoundly affect the success of multi-component immunotherapies.


Assuntos
Interferon-alfa/imunologia , Interleucina-2/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Humanos , Imunoterapia , Interferon-alfa/administração & dosagem , Interleucina-2/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Melanoma Experimental/patologia , Camundongos
12.
Methods Mol Biol ; 1266: 29-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25560066

RESUMO

The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome.


Assuntos
Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Animais , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/química , Endocitose , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Transporte Proteico , Coloração e Rotulagem
13.
Methods Mol Biol ; 1319: 3-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26060067

RESUMO

Yeast surface display is a powerful technology for engineering a broad range of protein scaffolds. This protocol describes the process for de novo isolation of protein binders from large combinatorial libraries displayed on yeast by using magnetic bead separation followed by flow cytometry-based selection. The biophysical properties of isolated single clones are subsequently characterized, and desired properties are further enhanced through successive rounds of mutagenesis and flow cytometry selections, resulting in protein binders with increased stability, affinity, and specificity for target proteins of interest.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Química Combinatória , Citometria de Fluxo , Imãs , Mutagênese , Biblioteca de Peptídeos , Ligação Proteica , Proteínas/química , Saccharomyces cerevisiae/genética
14.
Mol Ther Nucleic Acids ; 3: e162, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24825362

RESUMO

Protein-based methods of targeted short-interfering RNA (siRNA) delivery have the potential to solve some of the problems faced by nanoparticle-based methods, such as poor pharmacokinetics and biodistribution, low tumor penetration, and polydispersity. However, protein-based targeted delivery has been limited to fusion proteins with polycationic peptides as siRNA carriers, whose high charge density in some cases results in undesirable biophysical and in vivo properties. Here, we present a fully proteinaceous, multiagent approach for targeted siRNA delivery to epidermal growth factor receptor (EGFR), using a nonpolycationic carrier for siRNA. Each agent contributes a fundamentally different mechanism of action that work together for potent targeted RNA interference. The first agent is an EGFR-targeted fusion protein that uses a double-stranded RNA-binding domain as a nonpolycationic siRNA carrier. This double-stranded RNA-binding domain fusion protein can deliver siRNA to the endosomes of an EGFR-expressing cell line. A second agent delivers the cholesterol-dependent cytolysin, perfringolysin O, in a targeted manner, which enhances the endosomal escape of siRNA and induces gene silencing. A third agent that clusters EGFR increases gene-silencing potency and decreases cytolysin toxicity. Altogether, this system is potent, with only 16 nmol/l siRNA required for gene silencing and a therapeutic window that spans two orders of magnitude of targeted cytolysin concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA