Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557054

RESUMO

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated (R) Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism of BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9 (Smad1/5/9), which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.

2.
Mol Cancer ; 23(1): 125, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849860

RESUMO

BACKGROUND: Breast cancer is the most common malignant tumor, and metastasis remains the major cause of poor prognosis. Glucose metabolic reprogramming is one of the prominent hallmarks in cancer, providing nutrients and energy to support dramatically elevated tumor growth and metastasis. Nevertheless, the potential mechanistic links between glycolysis and breast cancer progression have not been thoroughly elucidated. METHODS: RNA-seq analysis was used to identify glucose metabolism-related circRNAs. The expression of circSIPA1L3 in breast cancer tissues and serum was examined by qRT-PCR, and further assessed its diagnostic value. We also evaluated the prognostic potential of circSIPA1L3 by analyzing a cohort of 238 breast cancer patients. Gain- and loss-of-function experiments, transcriptomic analysis, and molecular biology experiments were conducted to explore the biological function and regulatory mechanism of circSIPA1L3. RESULTS: Using RNA-seq analysis, circSIPA1L3 was identified as the critical mediator responsible for metabolic adaption upon energy stress. Gain- and loss-of-function experiments revealed that circSIPA1L3 exerted a stimulative effect on breast cancer progression and glycolysis, which could also be transported by exosomes and facilitated malignant behaviors among breast cancer cells. Significantly, the elevated lactate secretion caused by circSIPA1L3-mediated glycolysis enhancement promoted the recruitment of tumor associated macrophage and their tumor-promoting roles. Mechanistically, EIF4A3 induced the cyclization and cytoplasmic export of circSIPA1L3, which inhibited ubiquitin-mediated IGF2BP3 degradation through enhancing the UPS7-IGF2BP3 interaction. Furthermore, circSIPA1L3 increased mRNA stability of the lactate export carrier SLC16A1 and the glucose intake enhancer RAB11A through either strengthening their interaction with IGF2BP3 or sponging miR-665, leading to enhanced glycolytic metabolism. Clinically, elevated circSIPA1L3 expression indicated unfavorable prognosis base on the cohort of 238 breast cancer patients. Moreover, circSIPA1L3 was highly expressed in the serum of breast cancer patients and exhibited high diagnostic value for breast cancer patients. CONCLUSIONS: Our study highlights the oncogenic role of circSIPA1L3 through mediating glucose metabolism, which might serve as a promising diagnostic and prognostic biomarker and potential therapeutic target for breast cancer.


Assuntos
Progressão da Doença , Exossomos , Regulação Neoplásica da Expressão Gênica , Glucose , RNA Circular , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Exossomos/metabolismo , RNA Circular/genética , Glucose/metabolismo , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Animais , Prognóstico , Glicólise , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Reprogramação Metabólica , Proteínas de Membrana , Peptídeos e Proteínas de Sinalização Intracelular
3.
Mol Cancer ; 23(1): 102, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755678

RESUMO

Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Circular , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Humanos , RNA Circular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Feminino , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Prognóstico
4.
Sensors (Basel) ; 24(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339712

RESUMO

The Structural Health Monitoring (SHM) of pavement infrastructures holds paramount significance in the assessment and prognostication of the remaining service life of roadways. In response to this imperative, a methodology for surveilling the surface and internal mechanical responses of pavements was devised through the amalgamation of Accelerated Pavement Testing (APT) and Falling Weight Deflectometer (FWD) examinations. An experimental road segment, characterized by a conventional asphalt pavement structure with semi-rigid bases, was meticulously established in Jiangsu, China. Considering nine distinct influencing factors, including loading speed, loading weight, and temperature, innovative buried and layout configurations for Resistive Sensors and Fiber-optic Bragg Grating (FBG) sensors were devised. These configurations facilitated the comprehensive assessment of stress and strain within the road structure across diverse APT conditions. The methodology encompassed the formulation of response baselines, the conversion of electrical signals to stress and strain signals, and the proposition of a signal processing approach involving partial filtering and noise reduction. In experimental findings, the asphalt bottom layer was observed to undergo alternate tensile strains under dynamic loads (the peak strain was ten µÎµ). Simultaneously, the horizontal transverse sensor exhibited compressive strains peaking at 66.5 µÎµ. The horizontal longitudinal strain within the base and subbase ranged between 3 and 5 µÎµ, with the base registering a higher strain value than the subbase. When subjected to FWD, the sensor indicated a diminishing peak pulse signal, with the most pronounced peak response occurring when the load plate was situated atop the sensor. In summary, a comprehensive suite of monitoring schemes for road structures has been formulated, delineating guidelines for the deployment of road sensors and facilitating sustained performance observation over extended durations.

5.
Breast Cancer Res ; 25(1): 109, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770991

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS: Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS: LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS: Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.


Assuntos
MicroRNAs , Neurocalcina , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neurocalcina/genética , Neurocalcina/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Mol Cancer ; 22(1): 36, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810108

RESUMO

Cancer immunotherapy, especially immune checkpoint therapy, has revolutionized therapeutic options by reactivating the host immune system. However, the efficacy varies, and only a small portion of patients develop sustained antitumor responses. Hence, illustrating novel strategies that improve the clinical outcome of immune checkpoint therapy is urgently needed. N6-methyladenosine (m6A) has been proved to be an efficient and dynamic posttranscriptional modification process. It is involved in numerous RNA processing, such as splicing, trafficking, translation and degradation. Compelling evidence emphasizes the paramount role of m6A modification in the regulation of immune response. These findings may provide a foundation for the rational combination of targeting m6A modification and immune checkpoints in cancer treatment. In the present review, we summarize the current landscape of m6A modification in RNA biology, and highlight the latest findings on the complex mechanisms by which m6A modification governs immune checkpoint molecules. Furthermore, given the critical role of m6A modification in antitumor immunity, we discuss the clinical significance of targeting m6A modification to improve the efficacy of immune checkpoint therapy for cancer control.


Assuntos
Adenosina , Imunoterapia , Humanos , Relevância Clínica , RNA
7.
Respir Res ; 24(1): 202, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592245

RESUMO

Right heart failure is the leading cause of death in pulmonary hypertension (PH), and echocardiography is a commonly used tool for evaluating the risk hierarchy of PH. However, few studies have explored the dynamic changes in the structural and functional changes of the right heart during the process of PH. Previous studies have found that pulmonary circulation coupling right ventricular adaptation depends on the degree of pressure overload and other factors. In this study, we performed a time-dependent evaluation of right heart functional changes using transthoracic echocardiography in a SU5416 plus hypoxia (SuHx)-induced PH rat model. Rats were examined in 1-, 2-, 4-, and 6-week using right-heart catheterization, cardiac echocardiography, and harvested heart tissue. Our study found that echocardiographic measures of the right ventricle (RV) gradually worsened with the increase of right ventricular systolic pressure, and right heart hypofunction occurred at an earlier stage than pulmonary artery thickening during the development of PH. Furthermore, sarco-endoplasmic reticulum calcium ATPase 2 (SERCA2), a marker of myocardial damage, was highly expressed in week 2 of SuHx-induced PH and had higher levels of expression of γ-H2AX at all timepoints, as well as higher levels of DDR-related proteins p-ATM and p53/p-p53 and p21 in week 4 and week 6. Our study demonstrates that the structure and function of the RV begin to deteriorate with DNA damage and cellular senescence during the early stages of PH development.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Ratos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/diagnóstico por imagem , Proteína Supressora de Tumor p53 , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico por imagem , Ecocardiografia , Dano ao DNA , Hipóxia/complicações
8.
Exp Eye Res ; 234: 109607, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517541

RESUMO

Pseudomonas aeruginosa is a common pathogenic bacteria in canine ophthalmology. Lipopolysaccharide (LPS), a component in the cell wall of gram-negative bacteria, is released following bacterial lysis and causes pathology and inflammation of the cornea. Antibiotics are used to treat bacterial keratitis, and the reuse of antibiotics can easily cause bacterial resistance. Research has shown that glutamine (GLN) has anti-inflammatory and antioxidant biological functions. Herein, we explored the effects and underlying mechanisms of GLN and established an LPS-induced cornea inflammation model. Treatment groups comprised: control check (CK), LPS, LPS + GLN, and Sham groups. Topical GLN treatment alleviated corneal opacity, reduced corneal injury, and accelerated corneal wound healing. Furthermore, GLN treatment altered the uniform distribution of corneal epithelial cells and transformed the healing approach of these cells in the corneal wound from crawling to filling. The expression of Toll-like receptor 4 (TLR4), IL-6, TNF-α, and p-p65 and the activity of myeloperoxidase and superoxide dismutase decreased while the content of malondialdehyde increased in the LPS + GLN group compared with those in the LPS group. Thus, our study suggests that LPS-induced inflammation and oxidative stress may be suppressed via the TLR4/NF-κB signaling pathway by GLN and that GLN could be used as an adjunct therapy to reduce antibiotic use.


Assuntos
Ceratite , Lipopolissacarídeos , Cães , Animais , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like/metabolismo , Glutamina/farmacologia , Glutamina/metabolismo , Ceratite/tratamento farmacológico , Ceratite/prevenção & controle , NF-kappa B/metabolismo , Inflamação/patologia , Estresse Oxidativo
9.
Inorg Chem ; 62(28): 11056-11063, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37411009

RESUMO

Electrochemical water splitting is a green strategy for hydrogen (H2) production but is severely hindered by the sluggish anodic oxygen evolution reaction (OER). Therefore, replacing the sluggish anodic OER with more favorable oxidation reactions is an energy-saving approach for hydrogen production. Hydrazine borane (HB, N2H4BH3) is considered a potential hydrogen storage material due to its easy preparation, nontoxicity, and high chemical stability. Furthermore, the complete electrooxidation of HB has a unique characteristic of a much lower potential compared to that of OER. All these make it an ideal alternative for energy-saving electrochemical hydrogen production, however, which has never been reported so far. Herein, HB oxidation (HBOR)-assisted overall water splitting (OWS) is proposed for the first time for energy-saving electrochemical hydrogen production. The as-synthesized NiCoP@CoFeP nanoneedle array catalyst exhibited superefficient OER, hydrogen evolution reaction (HER), and HBOR performance. Impressively, NiCoP@CoFeP serves as both anodic and cathodic electrocatalysts for HB-assisted OWS, only requires a low cell voltage of only 0.078 V to achieve a current density of 10 mA cm-2, which was 1.4 V lower than that for HB-free OWS, indicating the highly energy-saving H2 production.

10.
Nicotine Tob Res ; 25(3): 364-371, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35922388

RESUMO

INTRODUCTION: To systematically review the association between smoking behavior and obstructive sleep apnea (OSA). AIMS AND METHODS: PubMed, Medline, the Cochrane Library, EMBASE, and Scopus databases were used to conduct this review. The two researchers independently screened the literatures, conducted the quality assessment, and data extraction according to the inclusion and exclusion criteria. The RevMan 5.3 was used to analysis the apnea hypopnea index (AHI) index, min saturation of oxyhemoglobin (SaO2), Epworth Sleepiness Scale (ESS) score, and oxygen desaturation index (DOI) and publication bias analysis to assess the effect of smoking on OSA patients. Furthermore, we performed subgroup of the severity of OSA, different countries of sample origin (western countries or eastern countries), and pack-years (PYs < 10 or PYs ≥ 20) to analyze the heterogeneity. RESULTS: Thirteen studies were included in this analysis that conformed to inclusion criteria and exclusion criteria. Totally 3654 smokers and 9796 non-smokers have participated. The meta-analysis of 13 studies demonstrated that AHI levels were significantly higher in smoker group compared with non-smoker, ESS scores were also significantly higher in smoker group compared with non-smoker, min SaO2 levels were obviously lower in smoker group compared with non-smoker, however, DOI levels hadn't significantly different between two groups. The subgroup analysis showed that there was an association between severe OSA, eastern countries, pack-years, and smoking. CONCLUSIONS: Smoking behavior is a significant association with OSA. Heavy smokers with histories of more than 20 PYs were at a higher risk of OSA. Moreover, patient with severe OSA exhibited a significantly association with smoking compared with patients with mild or moderate OSA. IMPLICATIONS: The relationship between smoking and OSA was controversial, especially, whether smoking increase or aggravate the risk of OSA. In our review and meta-analysis, we demonstrated that smoking behavior is a significant association with OSA. Heavy smokers with histories of more than 20 PYs were at a higher risk of OSA. Moreover, patient with severe OSA exhibited a significant association with smoking compared with patients with mild or moderate OSA. More prospective long-term follow-up studies about effect of quit smoking on OSA are recommended to establish the further relationship.


Assuntos
Apneia Obstrutiva do Sono , Fumar , Humanos , Fumar/epidemiologia , Estudos Prospectivos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Fumar Tabaco , não Fumantes
11.
Mol Ther ; 30(3): 1036-1053, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34864204

RESUMO

The tumor microenvironment (TME) is a dynamic network of cellular organization that comprises diverse cell types and significantly contributes to cancer development. As pivotal immune stromal cells in the TME, macrophages are extensively heterogeneous and exert both antitumor and protumor functions. Exosomes are nanosized extracellular membranous vesicles with diameters between 30 and 150 nm. By transferring multiple bioactive substances such as proteins, lipids, and nucleic acids, exosomes play an important role in the communication between cells. Recently, growing evidence has demonstrated that non-coding RNAs (ncRNAs) are enriched in exosomes and that exosomal ncRNAs are involved in the crosstalk between cancer cells and macrophages. Furthermore, circulating exosomal ncRNAs can be detected in biofluids, serving as promising noninvasive biomarkers for the early diagnosis and prognostic prediction of cancer. Exosome-based therapies are emerging as potent strategies that can be utilized to alleviate tumor progression. Herein, the present knowledge of exosomal ncRNAs and their vital roles in regulating the interplay between cancer cells and macrophages, as well as their clinical applications are summarized.


Assuntos
Exossomos , Neoplasias , Comunicação , Exossomos/genética , Exossomos/metabolismo , Humanos , Macrófagos/metabolismo , Neoplasias/patologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Microambiente Tumoral/genética
12.
Mol Ther ; 30(1): 415-430, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450253

RESUMO

The protein-coding ability of circular RNAs (circRNAs) has recently been a hot topic, but the expression and roles of protein-coding circRNAs in triple-negative breast cancer (TNBC) remain uncertain. By intersecting circRNA sequencing data from clinical samples and cell lines, we identified a circRNA, termed circ-EIF6, which predicted a poorer prognosis and correlated with clinicopathological characteristics in a cohort of TNBC patients. Functionally, we showed that circ-EIF6 promoted the proliferation and metastasis of TNBC cells in vitro and in vivo. Mechanistically, we found that circ-EIF6 contains a 675-nucleotide (nt) open reading frame (ORF) and that the -150-bp sequence from ATG functioned as an internal ribosome entry site (IRES), which is required for translation initiation in 5' cap-independent coding RNAs. circ-EIF6 encodes a novel peptide, termed EIF6-224 amino acid (aa), which is responsible for the oncogenic effects of circ-EIF6. The endogenous expression of EIF6-224aa was further examined in TNBC cells and tissues by specific antibody. Moreover, EIF6-224aa directly interacted with MYH9, an oncogene in breast cancer, and decreased MYH9 degradation by inhibiting the ubiquitin-proteasome pathway and subsequently activating the Wnt/beta-catenin pathway. Our study provided novel insights into the roles of protein-coding circRNAs and supported circ-EIF6/EIF6-224aa as a novel promising prognostic and therapeutic target for tailored therapy in TNBC patients.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Cadeias Pesadas de Miosina/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , beta Catenina/genética , beta Catenina/metabolismo
13.
J Environ Manage ; 302(Pt B): 114111, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800771

RESUMO

In this study, the visible-light-induced intimately coupled photocatalysis and biodegradation (ICPB) technology was fabricated using the TiO2/bagasse cellulose composite as the carrier and Phanerochaete mixed activated sludge as the biological source. The ICPB degradation effect of elemental chlorine free (ECF) bleaching wastewater was evaluated via the response surface design. Then, the wastewater was characterized, including absorbable organic halogen (AOX), dissolved organic carbon (DOC), chemical oxygen demand (COD), chroma, pH, suspended solids, and the organic compound changes in wastewater were analyzed by fourier transform infrared spectroscopy (FT-IR). Under the optimal conditions of pH 7, carrier filling rate of 5%, aeration rate of 2 L/min, and reaction time of 7 h, the degradation efficiencies of AOX, COD, and DOC were 95%, 91%, and 82%, respectively. The X-ray photoelectron spectroscopy (XPS) results of the ICPB carrier after the reaction were almost identical to those before the reaction. The biomass and its activity on the ICPB system were analyzed by the dominant bacteria during degradation (Curaneotrichosporon, Paenibacillus, Cellulonas, Phanerochaete, Dechlorobacter, Rhodotorula, Sphingobacterium, and Ruminiclostridium), which had a good degradation effect on wastewater. This study affords a novel method for the degradation of ECF bleaching wastewater and a new idea for ICPB technology optimization.


Assuntos
Matéria Orgânica Dissolvida , Águas Residuárias , Biodegradação Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio
14.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144510

RESUMO

The current wastewater treatment method shows low efficiency in treating wastewater with high concentrations of chemical mechanical pulp (CMP). Therefore, a chlorine dioxide Pretreatment Anaerobic Treatment (DPAT) was developed and applied to treat the CMP wastewater to obtain higher efficiency, obtaining the following results: The biodegradability of CMP wastewater improved after chlorine dioxide pretreatment. The COD of wastewater treated with chlorine dioxide was reduced from 5634 mg/L to 660 mg/L. The removal rate for chemical oxygen demand (COD) was 88.29%, 29.13% higher than the common anaerobic treatment. The reasons for the high efficiency of the DPAT treatment were that chlorine dioxide pretreatment removed the toxic substances in the original wastewater and thereby promoted the proliferation and growth of the anaerobe. The results show that pretreatment with chlorine dioxide can effectively enhance the biodegradability of high-concentration CMP wastewater. Therefore, DPAT treatment of high-concentration CMP wastewater is beneficial to environmental protection.


Assuntos
Compostos Clorados , Eucalyptus , Compostos Clorados/química , Óxidos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
15.
Semin Cancer Biol ; 60: 14-27, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31421262

RESUMO

Breast cancer is one of the most common malignancies among women throughout the world and is the major cause of most cancer-related deaths. Several explanations account for the high rate of mortality of breast cancer, and metastasis to vital organs is identified as the principal cause. Over the past few years, intensive efforts have demonstrated that breast cancer exhibits metastatic heterogeneity with distinct metastatic precedence to various organs, giving rise to differences in prognoses and responses to therapy in breast cancer patients. Bone, lung, liver, and brain are generally accepted as the primary target sites of breast cancer metastasis. However, the underlying molecular mechanism of metastatic heterogeneity of breast cancer remains to be further elucidated. Recently, the advent of novel genomic and pathologic approaches as well as technological breakthroughs in imaging analysis and animal modelling have yielded an unprecedented change in our understanding of the heterogeneity of breast cancer metastasis and provided novel insight for establishing more effective therapeutics. This review summarizes recent molecular mechanisms and emerging concepts on the metastatic heterogeneity of breast cancer and discusses the potential of identifying specific molecules against tumor cells or tumor microenvironments to thwart the development of metastatic disease and improve the prognosis of breast cancer patients.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Suscetibilidade a Doenças , Biomarcadores Tumorais , Neoplasias Ósseas/secundário , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Feminino , Humanos , Neoplasias Hepáticas/secundário , Terapia de Alvo Molecular , Metástase Neoplásica , Inoculação de Neoplasia , Microambiente Tumoral/genética
16.
Br J Cancer ; 125(8): 1056-1067, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34226684

RESUMO

Breast cancer is one of the most prevalent malignancies in women worldwide. Early-stage breast cancer is considered a curable disease; however, once distant metastasis occurs, the 5-year overall survival rate of patients becomes significantly reduced. There are four distinct metastatic patterns in breast cancer: bone, lung, liver and brain. Among these, breast cancer brain metastasis (BCBM) is the leading cause of death; it is highly associated with impaired quality of life and poor prognosis due to the limited permeability of the blood-brain barrier and consequent lack of effective treatments. Although the sequence of events in BCBM is universally accepted, the underlying mechanisms have not yet been fully elucidated. In this review, we outline progress surrounding the molecular mechanisms involved in BCBM as well as experimental methods and research models to better understand the process. We further discuss the challenges in the management of brain metastases, as well as providing an overview of current therapies and highlighting innovative research towards developing novel efficacious targeted therapies.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Redes Reguladoras de Genes , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Imunoterapia , Terapia de Alvo Molecular , Prognóstico , Análise de Sobrevida
17.
Cancer Cell Int ; 21(1): 13, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407498

RESUMO

BACKGROUND: Although immune checkpoint blockade has emerged as a novel promising strategy for triple-negative breast cancer (TNBC), many patients fail response or acquire resistance to current agents. Consequently, our focus need to shift toward alternative inhibitory targets, predictor for responsiveness, and immune suppressive mechanisms. METHODS: In this study, we performed systematic bioinformatics analyses to identify PPP2R2B as a robust tumor suppressor in TNBC. Meanwhile, breast cancer progression cell line model was applied in our research. Quantitative real-time PCR assay (Q-PCR) was carried out to assess the role of PPP2R2B in the onset and progression of breast cancer. Furthermore, we validated the effect of PPP2R2B on immune activity via in vitro experiments based on macrophages. To further decipher the roles of PPP2R2B in TNBC, we investigated the transcriptome level, genomic profiles, and its clinical prognostic value. RESULTS: In TNBC tissues, PPP2R2B expression was significantly downregulated compared to normal breast tissues. Kaplan-Meier survival analysis revealed that patients with low PPP2R2B expression had shorter survival time than those with high PPP2R2B expression. Q-PCR analysis suggested that PPP2R2B downregulation could play a key role in breast-cancer initiation and progression. Additionally, our findings showed that PPP2R2B was positively related with CD8 T cells, CD4 Th1 helper cells, and M1 macrophages, but negatively related with M2 macrophages. Subsequent results identified that PPP2R2B was strongly related with immune inhibitor genes (GZMA, PRF1, and IFNG), which could improve T lymphocytes antitumor function and restrict immune evasion. Meanwhile, T cell receptor signaling pathway and antigen processing and presentation signaling pathway were significantly suppressed in low PPP2R2B expression group. Afterwards, distinct subgroups based on PPP2R2B expression exhibited several unique features in somatic mutations, copy numbers alterations, extent of copy number burden, and promoter methylation level. CONCLUSION: Our results indicated that PPP2R2B could serve as a promising biomarker for TNBC, and help predict immunotherapeutic response and guide personalized strategies in TNBC treatment.

18.
PLoS Biol ; 16(7): e2005869, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30052635

RESUMO

Chemotherapeutic resistance in triple-negative breast cancer (TNBC) has brought great challenges to the improvement of patient survival. The mechanisms of taxane chemoresistance in TNBC have not been well investigated. Our results illustrated C-C motif chemokine ligand 20 (CCL20) was significantly elevated during taxane-containing chemotherapy in breast cancer patients with nonpathologic complete response. Furthermore, CCL20 promoted the self-renewal and maintenance of breast cancer stem cells (BCSCs) or breast cancer stem-like cells through protein kinase Cζ (PKCζ) or p38 mitogen-activated protein kinase (MAPK)-mediated activation of p65 nuclear factor kappa B (NF-κB) pathway, significantly increasing the frequency and taxane resistance of BCSCs. Moreover, CCL20-promoted NF-κB activation increased ATP-binding cassette subfamily B member 1 (ABCB1)/multidrug resistance 1 (MDR1) expression, leading to the extracellular efflux of taxane. These results suggested that chemotherapy-induced CCL20 mediated chemoresistance via up-regulating ABCB1. In addition, NF-κB activation increased CCL20 expression, forming a positive feedback loop between NF-κB and CCL20 pathways, which provides sustained impetus for chemoresistance in breast cancer cells. Our results suggest that CCL20 can be a novel predictive marker for taxane response, and the blockade of CCL20 or its downstream pathway might reverse the taxane resistance in breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Quimiocina CCL20/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Neoplasias da Mama/genética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteína Quinase C/metabolismo , Indução de Remissão , Taxoides/farmacologia , Taxoides/uso terapêutico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Environ Res ; 195: 110840, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33587946

RESUMO

Intimate coupling of visible-light photocatalysis and biodegradation (ICPB) offers potential for degrading chlorine dioxide bleaching wastewater. In this study, we reported a TiO2-coated sponge biofilm carrier with significant adhesion of TiO2 and the ability to accumulate biomass in its interior. Four mechanisms possibly acting in ICPB were tested separately: adsorption of chlorine dioxide bleaching wastewater to the carrier, photolysis, photocatalysis, and biodegradation by the biofilm inside the carrier. The carrier had an adsorption capacity of 17% and 16% for CODcr and AOX, respectively, in the wastewater. The photodegradation rate of wastewater was very low and could be ignored. Both biodegradation (AOX 30.1%, CODcr 33.8%, DOC 26.2%) and photocatalysis (AOX 65.1%, CODcr 71.2%, DOC 62.3%) possessed a certain degradation efficiency of wastewater. However, the removal rate of AOX, CODcr, and DOC in wastewater treatment by protocol ICPB reached 80.3%, 90.5%, and 86.7%. FT-IR and GC-MS analysis showed that the ICPB system had photocatalytic activity on the surface of the porous carrier in vitro, which could transform organic into small molecules for microbial utilization or complete mineralization. Moreover, the biofilm in the interior of the TiO2-coated sponge carrier could mineralize the photocatalytic products, which enhanced the removal of AOX, CODcr, and DOC by more than 15.2%, 20.0%, and 24.0%, respectively. The biofilm in the carrier of the ICPB system evolved, enriched in Proteobacteria, Chloroflexi, Bacteroidetes, and Actinobacteria, microorganisms known to play active roles in the biodegradation of papermaking wastewater.


Assuntos
Titânio , Águas Residuárias , Biodegradação Ambiental , Catálise , Compostos Clorados , Óxidos , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier
20.
BMC Surg ; 21(1): 187, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836721

RESUMO

BACKGROUND: In light of the extensive application of sentinel lymph node biopsy (SLNB) in clinically node-negative breast cancer patients and the recently investigated failure of SLNB after lumpectomy, it has become important to explore methods for preoperative mapping of sentinel lymph nodes (SLNs) and their lymphatics to direct precise SLNB and improve the identification rate of SLNs. METHODS: Twenty-seven patients with suspected breast cancer based on the results of the clinical examination and imaging were enrolled in the study. Computed tomographic lymphography (CTLG) followed by CT three-dimensional reconstruction was performed to determine the localization of SLNs and lymphatics on the body surface preoperatively. Intraoperatively combined staining with methylene blue and indocyanine green was used to evaluate the accuracy and feasibility of CTLG. RESULTS: SLNs and lymphatics from the breast were identified using CTLG in all patients, and preoperative SLNs and lymphatics localization on the body surface showed a significant role in the selection of operative incision and injection points. The accuracy rate of SLN and lymphatic detection by CTLG was 92.6% compared with intraoperatively combined staining. Moreover, preoperative CTLG performed well in SLN number detection, and the accuracy rate was 95.2%. CONCLUSION: We evaluate the procedure and application of preoperative CTLG in the superficial localization of SLNs and lymphatics, which may lead to a decreased incidence of cutting off the lymphatics of SLNs and consequently more rapid and accurate SLN detection. This method promotes personalized SLN mapping, providing detailed information about the number and anatomical location of SLNs and lymphatics for adequate surgical planning for breast cancer patients.


Assuntos
Neoplasias da Mama , Linfografia , Biópsia de Linfonodo Sentinela , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Linfografia/métodos , Cuidados Pré-Operatórios , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA