Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Am Chem Soc ; 145(28): 15331-15342, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37392396

RESUMO

Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.


Assuntos
Aminoácidos , Triptofano , Acetilação , Materiais Biocompatíveis , Bismuto
2.
Small ; 19(33): e2303335, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154239

RESUMO

Van der Waals heterojunction (vdWs) of 2D materials with integrated or extended superior characteristics, opening up new opportunities in functional electronic and optoelectric device applications. Exploring methods to achieve multifunctional vdWs heterojunction devices is one of the most promising prospects in this area. Herein, a diverse function of forward rectifying diode, Zener tunneling diode, and backward rectifying diodes are realized in GeAs/ReS2 heterojunction by modulating the doping level of GeAs. The tunneling diode presents an interesting trend forward negative differential resistance (NDR) behavior which may facilitate the application of multi-value logic. More importantly, the GeAs/ReS2 forward rectifying diode exhibits highly sensitive photodetection in the wide-spectrum range up to 1550 nm corresponding to a short-wave infrared (SWIR) region. In addition, as two strong anisotropic 2D materials of GeAs and ReS2 , the heterojunction exhibits strong polarization-sensitive photodetection behavior with a dichroic photocurrent ratio of 1.7. This work provides an effective strategy to achieve multifunctional 2D vdW heterojunction devices and develops more possibilities to broaden their functionalities and applications.

3.
Small ; : e2309493, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072779

RESUMO

Sulfonic acid-containing bioorganic monomers with wide molecular designability and abundant hydrogen bonding sites hold great potential to design diverse functional biocrystals but have so far not been explored for piezoelectric energy harvesting applications due to the lack of strategies to break the centrosymmetry of their assemblies. Here, a significant molecular packing transformation from centrosymmetric into non-centrosymmetric conformation by the addition of an amide terminus in the sulfonic acid-containing bioorganic molecule is demonstrated, allowing a high electromechanical response. The amide-functionalized molecule self-assembles into a polar supramolecular parallel ß-sheet-like structure with a high longitudinal piezoelectric coefficient d11 = 15.9 pm V-1 that produces the maximal open-circuit voltage of >1 V and the maximal power of 18 nW in nanogenerator devices pioneered. By contrast, molecules containing an amino or a cyclohexyl terminus assemble into highly symmetric 3D hydrogen bonding diamondoid-like networks or 2D double layer structures that show tunable morphologies, thermostability, and mechanical properties but non-piezoelectricity. This work not only presents a facile approach to achieving symmetry transformation of bioorganic assemblies but also demonstrates the terminal group and the property correlation for tailor-made design of high-performance piezoelectric biomaterials.

4.
Langmuir ; 39(4): 1474-1481, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36641772

RESUMO

Carbon nanotubes (CNTs) are a promising material for humidity sensors and wearable electronics due to their solution capability, good flexibility, and high conductivity. However, the performance of CNT-based humidity sensors is limited by their low sensitivity and slow response. Herein CNTs and hydrophilic polymers were mixed to form a composite. The hydrophilicity of the polymers and the network structure of the CNTs empowered the humidity sensors with a high response of 171% and a fast response/recovery time of 23 s/10 s. Owing to the sticky and flexible polymers, the humidity sensors showed strong adhesion to the PET substrate and exhibited outstanding bending durability. Furthermore, the flexible humidity sensor was applied to monitor human breathing and detect finger movements and handshaking.

5.
Phys Chem Chem Phys ; 25(7): 5520-5528, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723358

RESUMO

Biomolecule-based electronic materials can enable health innovations by virtue of their intrinsic bioactivity and physical properties. However, the ultra-wide bandgap and limited piezoelectric properties of most biomaterials prevent them from reaching their full potential. Herein, the electronic structures and electromechanical properties of aliphatic amino acid crystals are investigated based on density functional theory. L-Met is found to be a wide bandgap p-type semiconductor, and the much-reduced bandgap of 2.88 eV is ascribed to the sulphur atoms in L-Met. L-Leu has a shear piezoelectric voltage constant of 2.706 V mN-1 that is over an order of magnitude higher than that of lead zirconate titanate, and good toughness and ductility are also revealed in L-Leu from mechanical property investigations. This study illustrates a computational approach to find smart and multifunctional biomaterials and inspire their growth and applications.

6.
Chem Soc Rev ; 51(16): 6936-6947, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35861374

RESUMO

Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.


Assuntos
Microtecnologia , Peptídeos , Peptídeos/química
7.
J Am Chem Soc ; 144(40): 18375-18386, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164777

RESUMO

Supramolecular packing dictates the physical properties of bio-inspired molecular assemblies in the solid state. Yet, modulating the stacking modes of bio-inspired supramolecular assemblies remains a challenge and the structure-property relationship is still not fully understood, which hampers the rational design of molecular structures to fabricate materials with desired properties. Herein, we present a co-assembly strategy to modulate the supramolecular packing of N-terminally capped alanine-based assemblies (Ac-Ala) by changing the amino acid chirality and mixing with a nonchiral bipyridine derivative (BPA). The co-assembly induced distinct solid-state stacking modes determined by X-ray crystallography, resulting in significantly enhanced electromechanical properties of the assembly architectures. The highest rigidity was observed after the co-assembly of racemic Ac-Ala with a bipyridine coformer (BPA/Ac-DL-Ala), which exhibited a measured Young's modulus of 38.8 GPa. Notably, BPA crystallizes in a centrosymmetric space group, a condition that is broken when co-crystallized with Ac-L-Ala and Ac-D-Ala to induce a piezoelectric response. Enantiopure co-assemblies of BPA/Ac-D-Ala and BPA/Ac-L-Ala showed density functional theory-predicted piezoelectric responses that are remarkably higher than the other assemblies due to the increased polarization of their supramolecular packing. This is the first report of a centrosymmetric-crystallizing coformer which increases the single-crystal piezoelectric response of an electrically active bio-inspired molecular assembly. The design rules that emerge from this investigation of chemically complex co-assemblies can facilitate the molecular design of high-performance functional materials comprised of bio-inspired building blocks.


Assuntos
Alanina , Aminoácidos , Cristalografia por Raios X , Estrutura Molecular
8.
J Am Chem Soc ; 144(8): 3468-3476, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073071

RESUMO

The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host-guest binding, are not included in the classical piezoelectric model, which limits the rational design of eco-friendly piezoelectric supramolecular materials. Here, inspired by the conformation-dependent mechanoresponse of the Piezo channel proteins, we show that guest-host interactions can amplify the electromechanical response of a conformationally mobile peptide metal-organic framework (MOF) based on the endogenous carnosine dipeptide, demonstrating a new type of adaptive piezoelectric supramolecular material. Density functional theory (DFT) predictions validated by piezoresponse force microscopy (PFM) measurements show that directional alignment of the guest molecules in the host carnosine-zinc peptide MOF channel determines the macroscopic electromechanical properties. We produce stable, robust 1.4 V open-circuit voltage under applied force of 25 N with a frequency of 0.1 Hz. Our findings demonstrate that the regulation of host-guest interactions could serve as an efficient method for engineering sustainable peptide-based power generators.


Assuntos
Carnosina , Estruturas Metalorgânicas , Microscopia de Força Atômica , Conformação Molecular , Compostos Orgânicos
9.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36265462

RESUMO

Flexible transparent electrodes for touch panels, solar cells, and wearable electronics are in great demand in recent years, and the silver nanowire (AgNW) flexible transparent electrode (FTE) is among the top candidates due to its excellent light transmittance and flexibility and the highest conductivity of silver among all metals. However, the conductivity of an AgNWs network has long been limited by the large contact resistance. Here we show a room-temperature solution process to tackle the challenge by nanojoining AgNWs with two-dimensional graphene oxide (GO). The conductivity of the AgNWs network is improved 18 times due to the enhanced junctions between AgNWs by the coated GOs, and the AgNW-GO FTE exhibits a low sheet resistance of 23 Ohm sq-1and 88% light transmittance. It is stable under high temperature and current and their flexibility is intact after 1000 cycles of bending. Measurements of a bifunctional electrochromic device shows the high performance of the AgNW-GO FTE as a FTE.

10.
Angew Chem Int Ed Engl ; 61(17): e202201234, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35170170

RESUMO

The physical characteristics of supramolecular assemblies composed of small building blocks are dictated by molecular packing patterns in the solid-state. Yet, the structure-property correlation is still not fully understood. Herein, we report the unexpected cofacial to herringbone stacking transformation of a small aromatic bipyridine through co-assembly with acetylated glutamic acid. The unique solid-state structural transformation results in enhanced physical properties of the supramolecular organizations. The co-assembly methodology was further expanded to obtain diverse molecular packings by different bipyridine and acetylated amino acid derivatives. This study presents a feasible co-assembly approach to achieve the solid-state stacking transformation of supramolecular organization and opens up new opportunities to further explore the relationship between molecular arrangement and properties of supramolecular assemblies by crystal engineering.


Assuntos
Aminoácidos , Ácido Glutâmico , Conformação Molecular
11.
Nanotechnology ; 32(14): 145710, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438583

RESUMO

There are unrevealed factors that bring about the performance variations of resistive switching devices. In this work, Pt/CeO x /Pt devices prepared by magnetron sputtering showed rectification in their asymmetrical current-voltage (I-V) curves during voltage sweeps. X-ray photoelectron spectroscopy showed that the deposited CeO x film had an inhomogeneous composition, and more oxygen vacancies existed in CeO x near the top electrode. The asymmetrical resistance change of the Pt/CeO x /Pt devices can be explained by the presence of more charged oxygen vacancies in CeO x near the top electrode, along with the Schottky conduction mechanism. This work reveals that the compositional inhomogeneity is inevitable in the magnetron sputtering of oxide targets like CeO2 and can be an important source of device-to-device and cycle-to-cycle variations of memristors.

12.
Nanotechnology ; 33(6)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695816

RESUMO

The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing (EW) ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent EW abilities for high-performance TENGs.

13.
Opt Express ; 27(8): A352-A363, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052887

RESUMO

Photoelectrochemical water splitting is one of the viable approaches to produce clean hydrogen energy from water. Herein, we report MoS2/Si-heterojunction (HJ) photocathode for PEC H2 production. The MoS2/Si-HJ photocathode exhibits exceptional PEC H2 production performance with a maximum photocurrent density of 36.33 mA/cm2, open circuit potential of 0.5 V vs. RHE and achieves improved long-term stability up to 10 h of reaction time. The photocurrent density achieved by MoS2/Si-HJ photocathode is significantly higher than most of the MoS2 coupled Si-based photocathodes reported elsewhere, indicating excellent PEC H2 production performance.

14.
Mater Today (Kidlington) ; 30: 10-16, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31719792

RESUMO

Low biocompatibility or engineerability of conventional inorganic materials limits their extensive application for power harvesting in biological systems or at bio-machine interfaces. In contrast, intrinsically biocompatible peptide self-assemblies have shown promising potential as a new type of ideal components for eco-friendly optoelectronic energy-harvesting devices. However, the structural instability, weak mechanical strength, and inefficient optical or electrical properties severely impede their extensive application. Here, we demonstrate tryptophan-based aromatic dipeptide supramolecular structures to be direct wide-gap semiconductors. The molecular packings can be effectively modulated by changing the peptide sequence. The extensive and directional hydrogen bonding and aromatic interactions endow the structures with unique rigidity and thermal stability, as well as a wide-spectrum photoluminescence covering nearly the entire visible region, optical waveguiding, temperature/irradiation-dependent conductivity, and the ability to sustain quite high external electric fields. Furthermore, the assemblies display high piezoelectric properties, with a measured open-circuit voltage of up to 1.4 V. Our work provides insights into using aromatic short peptide self-assemblies for the fabrication of biocompatible, miniaturized electronics for power generation with tailored semiconducting optoelectronic properties and improved structural stability.

15.
Nano Lett ; 15(4): 2372-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25803813

RESUMO

An electric field built inside a crystal was proposed to enhance photoinduced carrier separation for improving photocatalytic property of semiconductor photocatalysts. However, a static built-in electric field can easily be saturated by the free carriers due to electrostatic screening, and the enhancement of photocatalysis, thus, is halted. To overcome this problem, here, we propose sonophotocatalysis based on a new hybrid photocatalyst, which combines ferroelectric nanocrystals (BaTiO3) and semiconductor nanoparticles (Ag2O) to form an Ag2O-BaTiO3 hybrid photocatalyst. Under periodic ultrasonic excitation, a spontaneous polarization potential of BaTiO3 nanocrystals in responding to ultrasonic wave can act as alternating built-in electric field to separate photoinduced carriers incessantly, which can significantly enhance the photocatalytic activity and cyclic performance of the Ag2O-BaTiO3 hybrid structure. The piezoelectric effect combined with photoelectric conversion realizes an ultrasonic-wave-driven piezophototronic process in the hybrid photocatalyst, which is the fundamental of sonophotocatalysis.

16.
Sensors (Basel) ; 15(9): 22914-40, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378536

RESUMO

Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect.


Assuntos
Eletrônica , Nanoestruturas , Nanotecnologia , Desenho de Equipamento , Pressão , Temperatura , Óxido de Zinco
17.
Nanotechnology ; 25(34): 345702, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25101819

RESUMO

The strain-induced band structure change in a semiconductor can change its resistivity, known as the piezoresistive effect. If the semiconductor is also a piezoelectric material, strain-induced polarization charge can control the current transport at the metal-semiconductor contact, which is called a 'piezotronic effect'. Piezotronic effect is intertwined with piezoresistive effect in the study of present piezotronic nanowire devices. Decoupling those effects will facilitate the fundamental study on the piezotronic devices and simplify the data analysis in real applications. Here, we report a general method to separate the piezotronic and piezoresistive effects in the same nanowire, based on modified four-point measurements. Current transport characteristics of each contact was extracted and showed different responses to the strain. The piezoresistive effect was measured in zinc oxide nanowires for the first time, and the result confirmed the dominant role of piezotronic effect in the strain-induced change of transport characteristics in a piezoelectric semiconductor. This study validates the assumption made in present piezotronic devices and provides a guideline for further investigation.

18.
Nano Lett ; 13(11): 5171-6, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24124793

RESUMO

Bottom-up synthesis of zinc oxide (ZnO) nanowires requires a highly engineered substrate to achieve alignment and orientation control. Here, we report textured ZnO film as an inexpensive substrate to fulfill the requirement. The textured film is coated conformally on various surface topographies and allows the epitaxial growth of ZnO nanowires with vertical, tilted, or lateral orientations. The textured film can also be formed into three-dimensional structure for growing novel nanostructures. The growth flexibility can potentially simplify device fabrication and optimize device performance.

19.
Chem Commun (Camb) ; 60(5): 586-589, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38099675

RESUMO

A metal-chelating membrane was exploited for the facile synthesis of N-doped graphitic carbon fibers (N-CFs) with abundant TM/TMOx nanoparticles completely exposed on the surfaces of the fibers. The ready accessiblity to multiple active sites and strong synergistic effects endowed the Fe/Fe3O4@N-CFs with optimal qualities, in particular delivering enhanced ORR performance in alkaline and neutral medium.

20.
Micromachines (Basel) ; 15(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793218

RESUMO

The widespread vibration is one of the most promising energy sources for IoT and small sensors, and broad-frequency vibration energy harvesting is important. Triboelectric nanogenerators (TENGs) can convert vibration energy into electrical energy through triboelectricity and electrostatic induction, providing an effective solution to the collection of broad-frequency vibration energy. Also, the power supply in constrained and compact spaces has been a long-standing challenge. Here, a miniaturized power supply (MPS) based on a broad-frequency vibration-driven triboelectric nanogenerator (TENG) is developed. The size of the MPS is 38 mm × 26 mm × 20 mm, which can adapt to most space-limited environments. The TENG device is optimized through theoretical mechanical modeling for the external stimuli, it can efficiently harvest vibrational energy in the frequency range of 1-100 Hz and has a high output power density of 134.11 W/cm3. The developed device demonstrates its practical application potential in powering small electronics like LEDs, watches, and timers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA