Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(5): 1504-1523, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163641

RESUMO

As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.


Assuntos
Fósforo , Plantas , Transdução de Sinais , Fósforo/metabolismo , Transporte Biológico , Plantas/metabolismo , Raízes de Plantas/metabolismo , Fosfatos/metabolismo , Nutrientes/metabolismo
2.
Plant Physiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028839

RESUMO

The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of three NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of three NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.

3.
BMC Plant Biol ; 24(1): 780, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148012

RESUMO

BACKGROUND: The symbiosis among plants, rhizobia, and arbuscular mycorrhizal fungi (AMF) is one of the most well-known symbiotic relationships in nature. However, it is still unclear how bilateral/tripartite symbiosis works under resource-limited conditions and the diverse genetic backgrounds of the host. RESULTS: Using a full factorial design, we manipulated mungbean accessions/subspecies, rhizobia, and AMF to test their effects on each other. Rhizobia functions as a typical facilitator by increasing plant nitrogen content, plant weight, chlorophyll content, and AMF colonization. In contrast, AMF resulted in a tradeoff in plants (reducing biomass for phosphorus acquisition) and behaved as a competitor in reducing rhizobia fitness (nodule weight). Plant genotype did not have a significant effect on AMF fitness, but different mungbean accessions had distinct rhizobia affinities. In contrast to previous studies, the positive relationship between plant and rhizobia fitness was attenuated in the presence of AMF, with wild mungbean being more responsive to the beneficial effect of rhizobia and attenuation by AMF. CONCLUSIONS: We showed that this complex tripartite relationship does not unconditionally benefit all parties. Moreover, rhizobia species and host genetic background affect the symbiotic relationship significantly. This study provides a new opportunity to re-evaluate the relationships between legume plants and their symbiotic partners.


Assuntos
Micorrizas , Rhizobium , Simbiose , Vigna , Micorrizas/fisiologia , Vigna/microbiologia , Vigna/genética , Vigna/fisiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia
4.
New Phytol ; 235(1): 292-305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358343

RESUMO

Plant lateral root (LR) growth usually is stimulated by arbuscular mycorrhizal (AM) symbiosis. However, the molecular mechanism is still unclear. We used gene expression analysis, peptide treatment and virus-induced gene alteration assays to demonstrate that C-terminally encoded peptide (CEP2) expression in tomato was downregulated during AM symbiosis to mitigate its negative effect on LR formation through an auxin-related pathway. We showed that enhanced LR density and downregulated CEP2 expression were observed during mycorrhizal symbiosis. Synthetic CEP2 peptide treatment reduced LR density and impaired the expression of genes involved in indole-3-butyric acid (IBA, the precursor of IAA) to IAA conversion, auxin polar transport and the LR-related signaling pathway; however, application of IBA or synthetic auxin 1-naphthaleneacetic acid (NAA) to the roots may rescue both defective LR formation and reduced gene expression. CEP receptor 1 (CEPR1) might be the receptor of CEP2 because its knockdown plants did not respond to CEP2 treatment. Most importantly, the LR density of CEP2 overexpression or knockdown plants could not be further increased by AM inoculation, suggesting that CEP2 was critical for AM-induced LR formation. These results indicated that AM symbiosis may regulate root development by modulating CEP2, which affects the auxin-related pathway.


Assuntos
Micorrizas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/metabolismo , Micorrizas/fisiologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose
5.
Plant Physiol ; 182(1): 393-407, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659125

RESUMO

Rice (Oryza sativa) OsNLA1 has been proposed to play a crucial role in regulating phosphate (Pi) acquisition in roots, similar to that of Arabidopsis (Arabidopsis thaliana) AtNLA. However, unlike AtNLA, OsNLA1 is not a target of miR827, a Pi starvation-induced microRNA. It is, therefore, of interest to know whether the expression of OsNLA1 depends on Pi supply and how it is regulated. In this study, we provide evidence that OsNLA1 controls Pi acquisition by directing the degradation of several OsPHT1 Pi transporters (i.e. OsPT1/2/4/7/8/12). We further show that OsNLA1 has an additional function in reproduction and uncover the mechanism of its expression regulation. Analysis of mRNA levels, promoter-GUS activity, and protoplast transient expression showed that the expression of OsNLA1.1, the most abundant transcript variant, is up-regulated in response to increasing Pi supply. The OsNLA1 promoter region was found to contain an upstream open reading frame that is required for Pi-responsive expression regulation. OsNLA1 promoter activity was observed in roots, ligules, leaves, sheaths, pollen grains, and surrounding the vascular tissues of anthers, suggesting that OsNLA1 is important throughout the development of rice. Disruption of OsNLA1 resulted in increased Pi uptake from roots as well as impaired pollen development and reduced grain production. In summary, our study reveals that Pi-induced OsNLA1 expression regulated by a unique mechanism functions in Pi acquisition, Pi translocation, and reproductive success.


Assuntos
Arabidopsis/metabolismo , Fases de Leitura Aberta/genética , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética
6.
Proc Natl Acad Sci U S A ; 112(21): 6754-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947154

RESUMO

Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling--although crucial for crop improvement--is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , Oryza/genética , Oryza/microbiologia , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Hidroxibenzoatos/metabolismo , Minerais/metabolismo , Oryza/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Supressão Genética , Simbiose/genética , Simbiose/fisiologia
7.
J Exp Bot ; 68(12): 3045-3055, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077447

RESUMO

Vacuoles play a fundamental role in storage and remobilization of various nutrients, including phosphorus (P), an essential element for cell growth and development. Cells acquire P primarily in the form of inorganic orthophosphate (Pi). However, the form of P stored in vacuoles varies by organism and tissue. Algae and yeast store polyphosphates (polyPs), whereas plants store Pi and inositol phosphates (InsPs) in vegetative tissues and seeds, respectively. In this review, we summarize how vacuolar P molecules are stored and reallocated and how these processes are regulated and co-ordinated. The roles of SYG1/PHO81/XPR1 (SPX)-domain-containing membrane proteins in allocating vacuolar P are outlined. We also highlight the importance of vacuolar P in buffering the cytoplasmic Pi concentration to maintain cellular homeostasis when the external P supply fluctuates, and present additional roles for vacuolar polyP and InsP besides being a P reserve. Furthermore, we discuss the possibility of alternative pathways to recycle Pi from other P metabolites in vacuoles. Finally, future perspectives for researching this topic and its potential application in agriculture are proposed.


Assuntos
Proteínas de Membrana/genética , Fósforo/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Vacúolos/metabolismo , Leveduras/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo
8.
BMC Genomics ; 16: 1009, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607788

RESUMO

BACKGROUND: In the past few decades, non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression in eukaryotes. Most studies of ncRNAs in plants have focused on the identification of silencing microRNAs (miRNAs) and small interfering RNAs (siRNAs). Another important family of ncRNAs that has been well characterized in plants is the small nucleolar RNAs (snoRNAs) and the related small Cajal body-specific RNAs (scaRNAs). Both target chemical modifications of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). In plants, the snoRNA genes are organized in clusters, transcribed by RNA Pol II from a common promoter and subsequently processed into mature molecules. The promoter regions of snoRNA polycistronic genes in plants are highly enriched in two conserved cis-regulatory elements (CREs), Telo-box and Site II, which coordinate the expression of snoRNAs and ribosomal protein coding genes throughout the cell cycle. RESULTS: In order to identify novel ncRNA genes, we have used the snoRNA Telo-box/Site II motifs combination as a functional promoter indicator to screen the Arabidopsis genome. The predictions generated by this process were tested by detailed exploration of available RNA-Seq and expression data sets and experimental validation. As a result, we have identified several snoRNAs, scaRNAs and 'orphan' snoRNAs. We also show evidence for 16 novel ncRNAs that lack similarity to any reported RNA family. Finally, we have identified two dicistronic genes encoding precursors that are processed to mature snoRNA and miRNA molecules. We discuss the evolutionary consequences of this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes. CONCLUSIONS: We present an alternative computational approach for non-coding RNA detection. Instead of depending on sequence or structure similarity in the whole genome screenings, we have explored the properties of promoter regions of well-characterized ncRNAs. Interestingly, besides expected ncRNAs predictions we were also able to recover single precursor arrangement for snoRNA-miRNA. Accompanied by analyses performed on rice sequences, we conclude that such arrangement might have interesting functional and evolutionary consequences and discuss this result in the context of a tight link between snoRNAs and miRNAs in eukaryotes.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Regiões Promotoras Genéticas , RNA Nucleolar Pequeno/genética , RNA não Traduzido/genética , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , Ordem dos Genes , MicroRNAs/química , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Interferência de RNA , RNA Nucleolar Pequeno/química , RNA não Traduzido/química , Sequências Reguladoras de Ácido Nucleico
9.
Plant Cell ; 24(10): 4236-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23073651

RESUMO

Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.


Assuntos
Micorrizas/genética , Oryza/genética , Proteínas de Transporte de Fosfato/fisiologia , Proteínas de Plantas/fisiologia , Simbiose/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Família Multigênica , Mutação , Micorrizas/crescimento & desenvolvimento , Fases de Leitura Aberta , Oryza/microbiologia , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Cell Sci ; 125(Pt 20): 4853-64, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22854048

RESUMO

Hepatocyte growth factor/scatter factor (HGF) is unique by inducing epithelial cell scattering, a cellular event pivotal to HGF-mediated invasive-growth response essential for embryonic development and metastasis. Krüppel-like factor 4 (KLF4) is a multifunctional zinc-finger transcription factor involved in cell proliferation, differentiation and self-renewal. We herein present the first evidence for the functional connection between KLF4 and HGF-induced cell scattering. In particular, we found that KLF4 was upregulated by HGF in two independent epithelial cell types, HepG2 and MDCK, whereas KLF4 knockdown inhibited HGF-induced E-cadherin suppression and cell scattering. Moreover, enforced nuclear KLF4 expression alone was sufficient to upregulate KLF4, downregulate E-cadherin and trigger scattering. Chromatin immunoprecipitation (ChIP) analysis further revealed that KLF4 induced suppression of E-cadherin transcription by directly binding to the E-cadherin promoter. Additionally, we proved that HGF-induced upregulation of KLF4 transcription and cell scattering require activation of the MEK/ERK signaling pathway and the induction of early growth response 1 (EGR-1). At the mechanistic level, ChIP analysis validated a direct binding of EGR-1 to the KLF4 promoter to induce KLF4 transcription; in turn, EGR-1-induced KLF4 binds to its own promoter, thus creating a positive feedback mechanism to sustain KLF4 expression and the resultant cell scattering. We conclude that KLF4 upregulation by HGF represents a novel mechanism mediating HGF-induced cell scattering and perhaps other associated events such as cell migration and invasion.


Assuntos
Movimento Celular/genética , Células Epiteliais , Fator de Crescimento de Hepatócito , Fatores de Transcrição Kruppel-Like , Animais , Caderinas/genética , Caderinas/metabolismo , Cães , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Desenvolvimento Embrionário/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Células Madin Darby de Rim Canino , Invasividade Neoplásica , Metástase Neoplásica/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA