RESUMO
Excess bone loss due to increased osteoclastogenesis is a significant clinical problem. Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation. The role of IFT80, an IFT complex B protein, in osteoclasts (OCs) is completely unknown. Here, we demonstrate that deletion of IFT80 in the myeloid lineage led to increased OC formation and activity accompanied by severe bone loss in mice. IFT80 regulated OC formation by associating with Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) to promote protein stabilization and proteasomal degradation of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6). IFT80 knockdown resulted in increased ubiquitination of Cbl-b and higher TRAF6 levels, thereby hyperactivating the receptor activator of nuclear factor-κß (NF-κß) ligand (RANKL) signaling axis and increased OC formation. Ectopic overexpression of IFT80 rescued osteolysis in a calvarial model of bone loss. We have thus identified a negative function of IFT80 in OCs.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Reabsorção Óssea , Proteínas de Transporte , Osteoclastos , Osteogênese , Proteínas Proto-Oncogênicas c-cbl , Fator 6 Associado a Receptor de TNF , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Reabsorção Óssea/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/genética , Proteólise , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , UbiquitinaçãoRESUMO
This study aimed to explore the expression, function, and mechanisms of TBC1D10B in colon cancer, as well as its potential applications in the diagnosis and treatment of the disease.The expression levels of TBC1D10B in colon cancer were assessed by analyzing the TCGA and CCLE databases. Immunohistochemistry analysis was conducted using tumor and adjacent non-tumor tissues from 68 colon cancer patients. Lentiviral infection techniques were employed to silence and overexpress TBC1D10B in colon cancer cells. The effects on cell proliferation, migration, and invasion were evaluated using CCK-8, EDU, wound healing, and Transwell invasion assays. Additionally, GSEA enrichment analysis was used to explore the association of TBC1D10B with biological pathways related to colon cancer. TBC1D10B was significantly upregulated in colon cancer and closely associated with patient prognosis. Silencing of TBC1D10B notably inhibited proliferation, migration, and invasion of colon cancer cells and promoted apoptosis. Conversely, overexpression of TBC1D10B enhanced these cellular functions. GSEA analysis revealed that TBC1D10B is enriched in the AKT/PI3K/mTOR signaling pathway and highly correlated with PAK4. The high expression of TBC1D10B in colon cancer is associated with poor prognosis. It influences cancer progression by regulating the proliferation, migration, and invasion capabilities of colon cancer cells, potentially acting through the AKT/PI3K/mTOR signaling pathway. These findings provide new targets and therapeutic strategies for the treatment of colon cancer.
Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Neoplasias do Colo , Proteínas Ativadoras de GTPase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Quinases Ativadas por p21 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genéticaRESUMO
Due to the chemical stability of graphene, synthesis of carboxylated graphene still remains challenging during the electrochemical exfoliation of graphite. In this work, a spatially confined radical addition reaction which occurs in the sub-nanometer scaled interlayers of the expanded graphene sheets for the electrochemical synthesis of highly stable carboxylated graphene is reported. Here, formate anions act as both intercalation ions and co-reactant acid for the confinement of electro-generated carboxylic radical (âCOOH) in the sub-nanometer scaled interlayers, which facilitates the radical addition reaction on graphene sheets. The controllable carboxylation of graphene is realized by tuning the concentration of formate anions in the electrolyte solution. The high crystallinity of the obtained product indicates the occurrence of spatially confined âCOOH addition reaction between the sub-nanometer interlayers of expanded graphite. In addition, the carboxylated graphene have been used for water desalination and hydrogen/oxygen reduction reaction. Therefore, this work provides a new method for the in situ preparation of functionalized graphene through the electrolysis and its applications in water desalination and hydrogen/oxygen reduction reactions.
RESUMO
Rechargeable zinc-air batteries (RZABs) are considered as one of the most promising clean energy device due to their abundant resources, low cost and environmental friendliness. However, their energy efficiency and cycle life are far from satisfactory due to the poor activity and stability of bi-functional electrocatalyst in air cathode. In this work, an efficient bi-functional catalyst (rGO-CoFe2O4/Co) was derived from its precursor (rGO-CoFe2O4) through a simple annealing process. Electrochemical measurements prove that rGO-CoFe2O4/Co with the in-situ formed Co nano particles and rich oxygen vacancies appears excellent oxygen reduction reaction and oxygen evolution reaction catalytic activity compared to its counterpart. Its half-wave potential is 0.81 V (vs RHE) and the OER overpotential is only 310 mV (vs RHE). In addition, rechargeable zinc-air batteries assembled with rGO-CoFe2O4/Co show the highest peak power density (128.9 mW cm-2) and cycling stability compared to rGO-CoFe2O4 and commercial Pt/C-RuO2 catalysts. This work provides a simple strategy for the design of advanced bifunctional catalysts.
RESUMO
Layered transition metal oxides are commonly used as the cathode materials in sodium-ion batteries due to their low cost and easy manufacturing. However, the application is hindered by poor rate performance and complex phase transitions. To address these challenges, a new seven-component high-entropy layered oxide cathode material, O3-NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (HEO) has been developed. The entropy stabilization effect plays a crucial role in improving the performance of electrochemical systems and the stability of structures. The HEO exhibits a specific discharge capacity of 154.1 mA h g-1 at 0.1 C and 94.5 mA h g-1 at 7 C. In-situ and ex-situ XRD results demonstrate that the HEO effectively retards complex phase transitions. This work provides a high-entropy design for the storage materials with a high energy density. Meanwhile, it eliminates industry doubts about the performance of sodium ion layered oxide cathode materials.
RESUMO
Direct regeneration has gained much attention in LiFePO4 battery recycling due to its simplicity, ecofriendliness, and cost savings. However, the excess carbon residues from binder decomposition, conductive carbon, and coated carbon in spent LiFePO4 impair electrochemical performance of direct regenerated LiFePO4. Herein, we report a preoxidation and prilling collaborative doping strategy to restore spent LiFePO4 by direct regeneration. The excess carbon is effectively removed by preoxidation. At the same time, prilling not only reduces the size of the primary particles and shortens the diffusion distance of Li+ but also improves the tap density of the regenerated materials. Besides, the Li+ transmission of the regenerated LiFePO4 is further improved by Ti4+ doping. Compared with commercial LiFePO4, it has excellent low-temperature performance. The collaborative strategy provides a new insight into regenerating high-performance spent LiFePO4.
RESUMO
Low-cost sodium ion batteries are of great significance in large-scale energy storage applications. With its high energy density and simple synthesis process, layered transition-metal oxides have become one of the most likely sodium ion battery cathode materials to replace lithium ion batteries in the energy storage market. Here, we report a prilling and MoS2 coating strategy to prepare the spherical cathode material. The spherical micronano particles shorten the diffusion path of Na+, restrain the complexity phase transitions, and enhance the tap density of the materials. In addition, the MoS2 coating improves the electrical conductivity of the material and the structural stability of the cathode material in air. The initial specific discharge capacity is 148.4 mA h g-1 at 0.1 C, which can be maintained at 128.9 mA h g-1 after exposure to air for 10 days. This method dramatically improves the energy density and structural stability of the cathode material, which provides a new scheme for preparing high-performance sodium ion batteries.
RESUMO
Objectives: This study investigates the role of Nicotinamide N-methyltransferase (NNMT) in immune infiltration modulation through amino acid metabolism in gastric adenocarcinoma (STAD). Methods: Utilizing data from The Cancer Genome Atlas (TCGA) and validated with clinical samples, we analyzed NNMT expression and its prognostic implications in STAD. Differential amino acid profiles between cancerous and adjacent normal tissues were assessed, along with their associations with NNMT. Results: NNMT exhibits heightened expression in STAD cancer tissues, positively correlating with tumor immune infiltration. Additionally, twenty-eight amino acids display differential expression in gastric tissue, with their metabolic enzymes showing connections to NNMT. Conclusions: Elevated NNMT expression in STAD tissues potentially influences amino acid metabolism, thereby affecting immune infiltration dynamics and tumorigenesis in gastric adenocarcinoma.
Assuntos
Adenocarcinoma , Aminoácidos , Nicotinamida N-Metiltransferase , Neoplasias Gástricas , Nicotinamida N-Metiltransferase/metabolismo , Nicotinamida N-Metiltransferase/genética , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Aminoácidos/metabolismo , Prognóstico , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-IdadeRESUMO
Whether a family history of diabetes (FHD) and exposure to perfluoroalkyl acids (PFAAs) are correlated with an increased risk of developing arthritis remains unclear. This cross-sectional study was conducted to explore the correlations between FHD or exposure to PFAAs and arthritis as well as their interaction using the National Health and Nutrition Examination Survey (NHANES). In total, 6,194 participants aged ≥ 20 years from the 2011-2018 NHANES were enrolled. PFAAs are a cluster of synthetic chemicals, including perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA) and perfluorohexane sulfonic acid (PFHxS). FHD was evaluated using self-reported questionnaires. Arthritis was classified into three types, rheumatoid arthritis (RA), osteoarthritis (OA), and others, which were diagnosed using questionnaires. Generalized linear models (GLMs) were used to test the correlation between FHD and arthritis. To examine the joint effects of PFAAs and FHD on arthritis, interaction terms were applied in the GLM. Arthritis incidence was 26.7% among all participants. FHD was associated with both RA [OR = 1.70 (95% CI: 1.15-2.50)] and other types of arthritis [OR = 1.62 (95% CI: 1.21-2.16)]. However, the relationship between FHD and OA was not significant after adjustment (P = 0.18). Interaction outcomes indicated that higher PFDA levels increased the association between FHD and arthritis. FHD is associated with an increased incidence of arthritis, which may be increased by PFDA. Given the heavy burden of arthritis, preventive measures for arthritis and reduction of PFAAs exposure for patients with FHD are required.
Assuntos
Artrite , Ácidos Decanoicos , Diabetes Mellitus , Poluentes Ambientais , Fluorocarbonos , Humanos , Inquéritos Nutricionais , Estudos Transversais , Artrite/epidemiologia , Artrite/genéticaRESUMO
Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epigênese Genética , Hipocampo , Chumbo , Manganês , Transtornos da Memória , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Epigênese Genética/efeitos dos fármacos , Manganês/toxicidade , Chumbo/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína Fosfatase 2/metabolismo , Aprendizagem/efeitos dos fármacosRESUMO
High-quality video object segmentation is a challenging visual computing task. Interactive segmentation can improve segmentation results. This paper proposes a multi-round interactive dynamic propagation instance-level video object segmentation network based on click interaction. The network consists of two parts: a user interaction segmentation module and a bidirectional dynamic propagation module. A prior segmentation network was designed in the user interaction segmentation module to better segment objects of different scales that users click on. The dynamic propagation network achieves high-precision video object segmentation through the bidirectional propagation and fusion of segmentation masks obtained from multiple rounds of interaction. Experiments on interactive segmentation datasets and video object segmentation datasets show that our method achieves state-of-the-art segmentation results with fewer click interactions.
RESUMO
BACKGROUND: This work evaluated the effects of proton pump inhibitors (PPIs) on cardiovascular events (CVEs) and inflammatory factors in patients with upper gastrointestinal bleeding (UGIB) undergoing dual antiplatelet therapy (DAPT) after percutaneous coronary intervention. Clinical data from these patients were analysis, intending to provide relevant theoretical evidence for clinical practice. MATERIALS AND METHODS: Data of 166 patients who underwent percutaneous coronary intervention and developed UGIB while on DAPT at The First People' Hospital of Linping District from April 2021 to April 2023 were retrospectively analyzed. The patients were rolled into two groups: those who received PPI treatment and those who did not, namely, PPI and non-PPI group, respectively. Furthermore, occurrence of CVEs and the levels of inflammatory factors of patients in all groups were statistically analyzed. RESULTS: In patients with UGIB, melena is a common presentation. The incidence of CVE in the PPI group showed no statistically significant difference compared to the control group, and there was no significant variance observed in the distribution of CVE incidence among different PPIs. However, levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) were significantly lower in the PPI group compared to the non-PPI group (P < 0.05). CONCLUSION: Melena was the most frequent clinical manifestation in UGIB patients. The use of PPIs did not increase the risk of CVEs, and different PPI drugs did not affect the occurrence of CVEs. Furthermore, PPIs lowered CRP and TNF-α levels in serum of these patients.
Assuntos
Doenças Cardiovasculares , Hemorragia Gastrointestinal , Inibidores da Agregação Plaquetária , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/administração & dosagem , Masculino , Feminino , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/administração & dosagem , Estudos Retrospectivos , Hemorragia Gastrointestinal/induzido quimicamente , Idoso , Pessoa de Meia-Idade , Terapia Antiplaquetária Dupla/métodos , Terapia Antiplaquetária Dupla/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Proteína C-Reativa/metabolismo , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Cobalt sulfide is deemed a promising anode material, owing to its high theoretical capacity (630 mAh g-1 ). Due to its low conductivity, fast energy decay, and the huge volume change during the lithiation process limits its practical application. In this work, a simple and large-scale method are developed to prepare Co1-x S nanoparticles embedding in N-doped carbon/graphene (CSCG). At a current density of 0.2 C, the reversible discharge capacity of CSCG maintains 937 mAh g-1 after 200 cycles. The discharge capacity of CSCG maintains at 596 mAh g-1 after 500 cycles at the high current density of 2.0 C. The excellent performance of CSCG is due to its unique structural features. The addition of rGO buffered volume changes while preventing Co1-x S from crushing/aggregating during the cycle, resulting in multiplier charge-discharge and long cycle life. The N-doped carbon provides a simple and easy way to achieve excellent performance in practical applications. Combined with density functional theory calculation, the presence of Co-vacancies(Co1-x ) increases more active site. Moreover, N-doping carbon is beneficial to the improve adsorption energy. This work presents a simple and effective structural engineering strategy and also provides a new idea to improve the performance of Li-ion batteries.
RESUMO
Ovarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Neoplasias Ovarianas , Humanos , Feminino , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Prognóstico , Apoptose/genéticaRESUMO
Efficient recycling of spent lithium-ion batteries (LIBs) is significant for solving environmental problems and promoting resource conservation. Economical recycling of LiFePO4 (LFP) batteries is extremely challenging due to the inexpensive production of LFP. Herein, we report a preoxidation combine with cation doping regeneration strategy to regenerate spent LiFePO4 (SLFP) with severely deteriorated. The binder, conductive agent, and residual carbon in SLFP are effectively removed through preoxidation treatment, which lays the foundation for the uniform and stable regeneration of LFP. Mg2+ doping is adopted to promote the diffusion efficiency of lithium ions, reduces the charge-transfer impedance, and further improves the electrochemical performance of the regenerated LFP. The discharge capacity of SLFP with severe deterioration recovers successfully from 43.2 to 136.9 mA h g-1 at 0.5 C. Compared with traditional methods, this technology is simple, economical, and environment-friendly. It provided an efficient way for recycling SLFP materials.
RESUMO
Heterostructured nanomaterials have arisen as electrocatalysts with great potential for hydrogen evolution reaction (HER), considering their superiority in integrating different active components but are plagued by their insufficient active site density in a wide pH range. In this report, double sulfur-vacancy-decorated CoS1.097@MoS2 core-shell heterojunctions are designed, which contain a primary structure of hollow CoS1.097 nanocubes and a secondary structure of ultrathin MoS2 nanosheets. Taking advantage of the core-shell type heterointerfaces and double sulfur-vacancy, the CoS1.097@MoS2 catalyst exhibits pH-universal HER performance, achieving the overpotentials at 10 mA cm-2 of 190, 139, and 220 mV in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS, respectively. Systematic theoretical results show that the double sulfur-vacancy can endow the CoS1.097@MoS2 core-shell heterojunctions with promoted electron/mass transfer and enhanced reactive kinetics, thus boosting HER performance. This work clearly demonstrates an indispensable role of double sulfur-vacancy in enhancing the electrocatalytic HER performance of core-shell type heterojunctions under a wide pH operating condition.
RESUMO
As one of the promising next-generation energy storage systems, lithium-sulfur (Li-S) batteries have been the subject of much recent attention. However, the polysulfide shuttle effect remains problematic owing to the dissolution of intermediate polysulfide species in the electrolyte and the sluggish reaction dynamics in Li-S batteries. To overcome these issues, this work reports an effective strategy for enhancing the electrochemical performance of Li-S batteries using single atom Zn doping on the S-terminated Ti2C MXenes (Ti2-xZnxCS2). Spin-polarized density functional theory (DFT) calculations were performed to elucidate the interactions of lithium polysulfides (LiPSs) and the Ti2-xZnxCS2 surface in terms of geometric and electronic properties, as well as the delithiation process of Li2S on the Ti2-xZnxCS2 surface. It is found that doping single atom Zn could induce a new Lewis acid-based sites, which could provide proper affinity toward LiPSs. Combined with the metallic character, a low Li diffusion barrier and high catalytic activity for the delithiation process of Li2S, makes Ti2-xZnxCS2 a promising cathode material for Li-S batteries. The results demonstrate the importance of surface chemistry and the electronic structure of MXenes in LiPSs' adsorption and catalysis capability. We believe that our findings provide insights into the recent experimental results and guidance for the preparation and practical application of MXenes in Li-S batteries.
RESUMO
KEY MESSAGE: The saffron phenylpropane synthesis pathway and Fusarium oxysporum cell wall-degrading enzymes play key roles in their early interactions. Saffron (Crocus sativus) is a highly important crop with diverse medicinal properties. F. oxysporum is a widely-distributed soil-borne fungus, causing the serious saffron rot disease. Currently, there is no effective management strategy to control this disease because of no resistant cultivars and limited information about the resistance and pathogenic mechanisms. In this study, we first characterized the infection process and physiological responses of saffron infected by F. oxysporum. The molecular mechanism of these infection interactions was revealed by dual RNA-seq analysis. On the 3rd day of infection, the hyphae completely entered, colonized and spread in the corm cells; while on the 6th day of infection, hyphae had appeared in the xylem cells, blocking these vessels. Transcriptome results indicate that within the host, phenylpropanoid metabolism, plant hormone signal transduction and plant pathogen interaction pathways were activated during infection. These pathways were conducive to the enhancement of cell wall, the occurrence of hypersensitivity, and the accumulation of various antibacterial proteins and phytoantitoxins. Meanwhile, in the fungus, many up-regulated genes were related to F. oxysporum cell wall degrading enzymes, toxin synthesis and pathogenicity gene, showing its strong pathogenicity. This study provides new ideas for the control of saffron corm rot, and also provides a theoretical basis for mining the key functional genes.
Assuntos
Crocus , Fusarium , RNA-Seq , Crocus/genética , Transcriptoma/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
Four new compounds, including two ascochlorin-type meroterpenoids acremocholrins A (1) and B (2), one pyridone alkaloid acremopyridone A (7), and one cyclopentenone derivative acremoketene A (12), together with eight known compounds (3-6 and 8-11), were isolated and identified from the hadal trench-derived fungus Acremonium dichromosporum YP-213. Their structures were determined with a detailed spectroscopic analysis of NMR and MS data, NOE analysis, octant rule and quantum chemical calculations of ECD, and NMR (with DP4+ probability analysis). Among the compounds, 7 represent a novel scaffold derived from a pyridone alkaloid by cleavage of the C-16-C-17 bond following oxidation to give a ketone. Compounds 9, 11, and 12 showed potent in vivo anti-inflammatory activity in transgenic zebrafish, while compound 8 exhibited significant proangiogenic activity in transgenic zebrafish.
Assuntos
Acremonium , Alcaloides , Peixe-Zebra , Animais , Anti-Inflamatórios/farmacologia , Fungos , PiridonasRESUMO
AIM: To investigate the detectability of noninvasive prenatal screening (NIPS) with conventional sequencing depth to detect fetal copy number variants. METHODS: We performed a retrospective study in a total of 19 144 pregnant women. Their cell-free plasma DNA were assessed for trisomy 21, trisomy 18, trisomy 13, sex chromosome aneuploidies, and genome-wide copy number variants by NIPS at conventional sequencing depth. RESULTS: Three hundred seventy-four cases (2.0%, 374/19 144) with abnormal results were detected, which including 84 cases (0.4%, 84/19 144) with high risk of trisomy 21, 18, and 13, 90 cases (0.5%, 90/19 144) with high risk of sex chromosome abnormalities (SCA), and 44 cases (0.2%, 44/19 144) with high risk of other chromosome aneuploidies. One hundred fifty-six cases (0.8%, 156/19 144) with high risk of copy number variations (CNVs) were also detected. In following prenatal diagnosis, composite positive predictive value (PPV) of trisomy 21, 18, and 13 was 69.6% (48/69). The PPV of SCAs was 37.3% (19/51). And the PPVs for CNVs was detected as 51.0% (<5 Mb), 71.4% (5 Mb ≤ CNV ≤10 Mb), 56.5% (>10 Mb). Finally, a follow-up about the pregnancy outcomes were conducted for all available cases. CONCLUSIONS: NIPS yielded high PPVs for trisomy 21, 18, and 13 aneuploidies and moderate PPVs for SCAs and CNVs. The screening effectiveness was closely related to the size of CNV fragments. Larger CNVs, especially larger than 5 Mb, could be detected more accurately by NIPS in our analytic technique. Meanwhile, diagnostic confirmation by microarray analysis was highly recommended.