Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(13): 136401, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067310

RESUMO

Using ab initio approaches for extended Hubbard interactions coupled to phonons, we reveal that the intersite Coulomb interaction plays important roles in determining various distinctive phases of the paradigmatic charge-ordered materials of Ba_{1-x}K_{x}AO_{3} (A=Bi and Sb). We demonstrated that all their salient doping dependent experiment features such as breathing instabilities, anomalous phonon dispersions, and transition between charge-density wave and superconducting states can be accounted for very well if self-consistently obtained nearest neighbor Hubbard interactions are included, thus establishing a minimal criterion for reliable descriptions of spontaneous charge orders in solids.

2.
Phys Rev Lett ; 117(1): 016803, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419582

RESUMO

A totally anisotropic peculiar Rashba-Bychkov (RB) splitting of electronic bands was found on the Tl/Si(110)-(1×1) surface with C_{1h} symmetry by angle- and spin-resolved photoelectron spectroscopy and first-principles theoretical calculation. The constant energy contour of the upper branch of the RB split band has a warped elliptical shape centered at a k point located between Γ[over ¯] and the edge of the surface Brillouin zone, i.e., at a point without time-reversal symmetry. The spin-polarization vector of this state is in-plane and points almost the same direction along the whole elliptic contour. This novel nonvortical RB spin structure is confirmed as a general phenomenon originating from the C_{1h} symmetry of the surface.

3.
J Phys Condens Matter ; 34(29)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35504269

RESUMO

We study the lattice dynamics of antiferromagnetic transition-metal oxides by using self-consistent Hubbard functionals. We calculate the ground states of the oxides with the on-site and intersite Hubbard interactions determined self-consistently within the framework of density functional theory. The on-site and intersite Hubbard terms fix the errors associated with the electron self-interaction in the local and semilocal functionals. Inclusion of the intersite Hubbard terms in addition to the on-site Hubbard terms produces accurate phonon dispersion of the transition-metal oxides. Calculated Born effective charges and high-frequency dielectric constants are in good agreement with experiment. Our study provides a computationally inexpensive and accurate set of first-principles calculations for strongly-correlated materials and related phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA