Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38651814

RESUMO

HORTON is a free and open-source electronic-structure package written primarily in Python 3 with some underlying C++ components. While HORTON's development has been mainly directed by the research interests of its leading contributing groups, it is designed to be easily modified, extended, and used by other developers of quantum chemistry methods or post-processing techniques. Most importantly, HORTON adheres to modern principles of software development, including modularity, readability, flexibility, comprehensive documentation, automatic testing, version control, and quality-assurance protocols. This article explains how the principles and structure of HORTON have evolved since we started developing it more than a decade ago. We review the features and functionality of the latest HORTON release (version 2.3) and discuss how HORTON is evolving to support electronic structure theory research for the next decade.

2.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748031

RESUMO

Grid is a free and open-source Python library for constructing numerical grids to integrate, interpolate, and differentiate functions (e.g., molecular properties), with a strong emphasis on facilitating these operations in computational chemistry and conceptual density functional theory. Although designed, maintained, and released as a stand-alone Python library, Grid was originally developed for molecular integration, interpolation, and solving the Poisson equation in the HORTON and ChemTools packages. Grid is designed to be easy to use, extend, and maintain; this is why we use Python and adopt many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. We leverage popular scientific packages, such as NumPy and SciPy, to ensure high efficiency and optimized performance in grid development. This article is the official release note of the Grid library showcasing its unique functionality and scope.

3.
J Comput Chem ; 42(6): 458-464, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368350

RESUMO

IOData is a free and open-source Python library for parsing, storing, and converting various file formats commonly used by quantum chemistry, molecular dynamics, and plane-wave density-functional-theory software programs. In addition, IOData supports a flexible framework for generating input files for various software packages. While designed and released for stand-alone use, its original purpose was to facilitate the interoperability of various modules in the HORTON and ChemTools software packages with external (third-party) molecular quantum chemistry and solid-state density-functional-theory packages. IOData is designed to be easy to use, maintain, and extend; this is why we wrote IOData in Python and adopted many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. This article is the official release note of the IOData library.

4.
J Chem Phys ; 145(3): 031102, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448863

RESUMO

Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nß, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nß, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nß, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare-we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested-but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

5.
J Chem Theory Comput ; 20(11): 4616-4628, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38819213

RESUMO

We present a new, nonarbitrary, internally consistent, and unambiguous framework for spin-polarized conceptual density-functional theory (SP-DFT). We explicitly characterize the convex hull of energy, as a function of the number of electrons and their spin, as the only accessible ground states in spin-polarized density functional theory. Then, we construct continuous linear and quadratic models for the energy. The nondifferentiable linear model exactly captures the simplicial geometry of the complex hull about the point of interest and gives exact representations for the conceptual DFT reactivity indicators. The continuous quadratic energy model is the paraboloid of maximum curvature, which most tightly encloses the point of interest and neighboring vertices. The quadratic model is invariant to the choice of coordinate system (i.e., {N, S} vs {Nα, Nß}) and reduces to a sensible formulation of spin-free conceptual DFT in the appropriate limit. Using the quadratic model, we generalize the Parr functions {P+(r), P-(r)} (and their derivatives with respect to number of electrons) to this new spin-polarized framework, integrating the Parr function concept into the context of (spin-polarized) conceptual DFT, and extending it to include higher-order effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA