RESUMO
Lipoprotein disorder is a common feature of chronic pancreatitis (CP); however, the relationship between lipoprotein disorder and pancreatic fibrotic environment is unclear. Here, we investigated the occurrence and mechanism of pancreatic stellate cell (PSC) activation by lipoprotein metabolites and the subsequent regulation of type 2 immune responses, as well as the driving force of fibrotic aggressiveness in CP. Single-cell RNA sequencing revealed the heterogeneity of PSCs and identified very-low-density lipoprotein receptor (VLDLR)+ PSCs that were characterized by a higher lipid metabolism. VLDLR promoted intracellular lipid accumulation, followed by interleukin-33 (IL-33) expression and release in PSCs. PSC-derived IL-33 strongly induced pancreatic group 2 innate lymphoid cells (ILC2s) to trigger a type 2 immune response accompanied by the activation of PSCs, eventually leading to fibrosis during pancreatitis. Our findings indicate that VLDLR-enhanced lipoprotein metabolism in PSCs promotes pancreatic fibrosis and highlight a dominant role of IL-33 in this pro-fibrotic cascade.
Assuntos
Células Estreladas do Pâncreas , Pancreatite Crônica , Receptores de LDL/metabolismo , Células Cultivadas , Fibrose , Humanos , Imunidade Inata , Interleucina-33/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas VLDL/metabolismo , Linfócitos/metabolismo , Pâncreas/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologiaRESUMO
Intestinal barrier immunity is essential for controlling gut microbiota without eliciting harmful immune responses, while its defect contributes to the breakdown of intestinal homeostasis and colitis development. Chemerin, which is abundantly expressed in barrier tissues, has been demonstrated to regulate tissue inflammation via CMKLR1, its functional receptor. Several studies have reported the association between increased expression of chemerin-CMKLR1 and disease severity and immunotherapy resistance in inflammatory bowel disease (IBD) patients. However, the pathophysiological role of endogenous chemerin-CMKLR1 signaling in intestinal homeostasis remains elusive. We herein demonstrated that deficiency of chemerin or intestinal epithelial cell (IEC)-specific CMKLR1 conferred high susceptibility to microbiota-driven neutrophilic colon inflammation and subsequent tumorigenesis in mice following epithelial injury. Unexpectedly, we found that lack of chemerin-CMKLR1 signaling specifically reduced expression of lactoperoxidase (LPO), a peroxidase that is predominantly expressed in colonic ECs and utilizes H2O2 to oxidize thiocyanates to the antibiotic compound, thereby leading to the outgrowth and mucosal invasion of gram-negative bacteria and dysregulated CXCL1/2-mediated neutrophilia. Importantly, decreased LPO expression was causally linked to aggravated microbiota-driven colitis and associated tumorigenesis, as LPO supplementation could completely rescue such phenotypes in mice deficient in epithelial chemerin-CMKLR1 signaling. Moreover, epithelial chemerin-CMKLR1 signaling is necessary for early host defense against bacterial infection in an LPO-dependent manner. Collectively, our study reveals that the chemerin-CMKLR1/LPO axis represents an unrecognized immune mechanism that potentiates epithelial antimicrobial defense and restricts harmful colonic neutrophilia and suggests that LPO supplementation may be beneficial for microbiota dysbiosis in IBD patients with a defective innate antimicrobial mechanism.
Assuntos
Carcinogênese , Quimiocinas , Colite , Colo , Microbioma Gastrointestinal , Peptídeos e Proteínas de Sinalização Intercelular , Lactoperoxidase , Receptores de Quimiocinas , Animais , Carcinogênese/imunologia , Transformação Celular Neoplásica , Quimiocinas/genética , Quimiocinas/metabolismo , Colite/imunologia , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Peróxido de Hidrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactoperoxidase/metabolismo , Camundongos , Neutrófilos/imunologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismoRESUMO
OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear. DESIGN: We performed studies with LSL-Kras G12D; Ptf1a-Cre ERT (KCERT) mice or LSL-KrasG12D; LSL-Trp53R172H ; Pdx1-Cre (KPC) mice crossed with conditional disruption of STAT5 or completed deficiency interleukin (IL)-22. Pancreatitis was induced in mice by administration of cerulein. Pharmacological inhibition of STAT5 on PDAC prevention was studied in the orthotopic transplantation and patient-derived xenografts PDAC model, and KPC mice. RESULTS: The expression and phosphorylation of STAT5 were higher in human PDAC samples than control samples and high levels of STAT5 in tumour cells were associated with a poorer prognosis. The loss of STAT5 in pancreatic cells substantially reduces the KRAS mutation and pancreatitis-derived acinar-to-ductal metaplasia (ADM) and PDAC lesions. Mechanistically, we discovered that STAT5 binds directly to the promoters of ADM mediators, hepatocyte nuclear factor (HNF) 1ß and HNF4α. Furthermore, STAT5 plays a crucial role in maintaining energy metabolism in tumour cells during PDAC progression. IL-22 signalling induced by chronic inflammation enhances KRAS-mutant-mediated STAT5 phosphorylation. Deficiency of IL-22 signalling slowed the progression of PDAC and ablated STAT5 activation. CONCLUSION: Collectively, our findings identified pancreatic STAT5 activation as a key downstream effector of oncogenic KRAS signalling that is critical for ADM initiation and PDAC progression, highlighting its potential therapeutic vulnerability.
Assuntos
Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Pancreatite , Proteínas Proto-Oncogênicas p21(ras) , Fator de Transcrição STAT5 , Animais , Fator de Transcrição STAT5/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/metabolismo , Metaplasia/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Humanos , Pancreatite/metabolismo , Pancreatite/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Pâncreas/patologia , Pâncreas/metabolismoRESUMO
BACKGROUND & AIMS: Tumour-associated macrophages (TAMs) contribute to hepatocellular carcinoma (HCC) progression. However, while the pro-tumour and immunosuppressive roles of lipid-loaded macrophages are well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects in TAMs remain unclear. METHODS: Single-cell RNA sequencing was performed on mouse and human HCC tumour samples to elucidate the landscape of HCC TAMs. Macrophages were stimulated with various long-chain unsaturated fatty acids (UFAs) to assess immunosuppressive molecules expression in vitro. Additionally, in vivo and in vitro studies were conducted using mice with macrophage-specific deficiencies in fatty acid-binding protein 5 (FABP5) or peroxisome proliferator-activated receptor (PPAR). RESULTS: Single-cell RNA sequencing identified a subpopulation of FABP5+ lipid-loaded TAMs characterized by enhanced immune checkpoint blocker ligands and immunosuppressive molecules in an oncogene-mutant HCC mouse model and human HCC tumours. Mechanistically, long-chain UFAs released by tumour cells activate PPARvia FABP5, resulting in TAM immunosuppressive properties. FABP5 deficiency in macrophages decreases immunosuppressive molecules expression, enhances T-cell-dependent antitumor immunity, diminishes HCC growth, and improves immunotherapy efficacy. CONCLUSIONS: This study demonstrates that UFAs promote tumourigenesis by enhancing the immunosuppressive tumour microenvironment via FABP5-PPAR signaling and provides a proof-of-concept for targeting this pathway to improve tumour immunotherapy.
RESUMO
Sophora alopecuroides has important uses in medicine, wind breaking, and sand fixation. The CHY-zinc-finger and RING-finger (CHYR) proteins are crucial for plant growth, development, and environmental adaptation; however, genetic data regarding the CHYR family remain scarce. We aimed to investigate the CHYR gene family in S. alopecuroides and its response to abiotic stress, and identified 18 new SaCHYR genes from S. alopecuroides whole-genome data, categorized into 3 subclasses through a phylogenetic analysis. Gene structure, protein domains, and conserved motifs analyses revealed an exon-intron structure and conserved domain similarities. A chromosome localization analysis showed distribution across 12 chromosomes. A promoter analysis revealed abiotic stress-, light-, and hormone-responsive elements. An RNA-sequencing expression pattern analysis revealed positive responses of SaCHYR genes to salt, alkali, and drought stress. SaCHYR4 overexpression considerably enhanced alkali and drought tolerance in Arabidopsis thaliana. These findings shed light on SaCHYR's function and the resistance mechanisms of S. alopecuroides, presenting new genetic resources for crop resistance breeding.
Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Sophora , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sophora/genética , Arabidopsis/genética , Genoma de Planta , Secas , Cromossomos de Plantas/genéticaRESUMO
BACKGROUND AND AIMS: We previously demonstrated that cancer-associated fibroblasts (CAFs) promote tumor growth through recruitment of myeloid-derived suppressor cells (MDSCs). 5-lipoxygenase (5-LO) is highly expressed in myeloid cells and is critical for synthesizing leukotriene B4 (LTB4), which is involved in tumor progression by activating its receptor leukotriene B4 receptor type 2 (BLT2). In this study, we investigated whether and how CAFs regulate MDSC function to enhance cancer stemness, the driving force of the cancer aggressiveness and chemotherapy refractoriness, in highly desmoplastic intrahepatic cholangiocarcinoma (ICC). APPROACH AND RESULTS: RNA-sequencing analysis revealed enriched metabolic pathways but decreased inflammatory pathways in cancer MDSCs compared with blood MDSCs from patients with ICC. Co-injection of ICC patient-derived CAFs promoted cancer stemness in an orthotopic ICC model, which was blunted by MDSC depletion. Conditioned media (CM) from CAF-educated MDSCs drastically promoted tumorsphere formation efficiency and stemness marker gene expression in ICC cells. CAF-CM stimulation increased expression and activity of 5-LO in MDSCs, while 5-LO inhibitor impaired the stemness-enhancing capacity of MDSCs in vitro and in vivo. Furthermore, IL-6 and IL-33 primarily expressed by CAFs mediated hyperactivated 5-LO metabolism in MDSCs. We identified the LTB4-BLT2 axis as the critical downstream metabolite signaling of 5-LO in promoting cancer stemness, as treatment with LTB4 was elevated in CAF-educated MDSCs, or blockade of BLT2 (which was preferentially expressed in stem-like ICC cells) significantly reduced stemness-enhancing effects of CAF-educated MDSCs. Finally, BLT2 blockade augmented chemotherapeutic efficacy in ICC patient-derived xenograft models. CONCLUSIONS: Our study reveals a role for CAFs in orchestrating the optimal cancer stemness-enhancing microenvironment by educating MDSCs, and suggests the 5-LO/LTB4-BLT2 axis as promising therapeutic targets for ICC chemoresistance by targeting cancer stemness.
Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Neoplasias dos Ductos Biliares/patologia , Fibroblastos Associados a Câncer/metabolismo , Colangiocarcinoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/patologia , Comunicação Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Meios de Cultivo Condicionados/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Inibidores de Lipoxigenase/farmacologia , Masculino , Camundongos , Células Supressoras Mieloides/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores do Leucotrieno B4/antagonistas & inibidores , Receptores do Leucotrieno B4/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Male infertility is a global issue that seriously affects reproductive health. This study aimed to understand the underlying causes of idiopathic non-obstructive azoospermia (iNOA), which is a type of male infertility with unknown origins that accounts for 10-15% of cases. By using single-cell analysis techniques, we aimed to uncover the mechanisms of iNOA and gain insight into the cellular and molecular changes in the testicular environment. In this study, we performed bioinformatics analysis using scRNA-seq and microarray data obtained from the GEO database. The analysis included techniques such as pseudotime analysis, cell-cell communication, and hdWGCNA. Our study showed a significant difference between the iNOA and the normal groups, indicating a disorder in the spermatogenic microenvironment in iNOA. We observed a reduction in the proportion of Sertoli cells and blocked germ cell differentiation. Additionally, we found evidence of testicular inflammation related to macrophages and identified ODF2 and CABYR as potential biomarkers for iNOA.
Assuntos
Azoospermia , Infertilidade Masculina , Orquite , Humanos , Masculino , Azoospermia/genética , Testículo , Espermatogênese , Inflamação , Análise de Célula Única , Proteínas de Choque TérmicoRESUMO
Metastasis is the leading cause of tumor-related death from lung cancer. However, limited success has been achieved in the treatment of lung cancer metastasis due to the lack of understanding of the mechanisms that underlie the metastatic process. In this study, Lewis lung carcinoma (LLC) cells which expressed green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm were used to record metastatic process in real-time via a whole-mouse imaging system. Using this system, we show the neddylation inhibitor MLN4924 inhibits multiple steps of the metastatic process, including intravascular survival, extravasation, and formation of metastatic colonies, thus finally suppressing tumor metastasis. Mechanistically, MLN4924 efficiently inhibits the expression of MMP2, MMP9, and vimentin and disrupts the actin cytoskeleton at an early stage to impair invasive potential and subsequently causes a DNA damage response, cell cycle arrest, and apoptosis upon long exposure to MLN4924. Furthermore, MMP2 and MMP9 are overexpressed in patient lung adenocarcinoma, which conferred a worse overall survival. Together, targeting the neddylation pathway via MLN4924 suppresses multiple steps of the metastatic process, highlighting the potential therapeutic value of MLN4924 for the treatment of metastatic lung cancer.
Assuntos
Neoplasias Pulmonares/metabolismo , Proteína NEDD8/metabolismo , Metástase Neoplásica/prevenção & controle , Animais , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ciclopentanos/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/fisiopatologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína NEDD8/fisiologia , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/fisiopatologia , Processamento de Proteína Pós-Traducional/fisiologia , Pirimidinas/farmacologia , Transdução de Sinais , Enzimas Ativadoras de Ubiquitina/metabolismo , Vimentina/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cisplatin is an effective chemotherapeutic agent and widely used in treatment of various solid organ malignancies, including head and neck, ovarian, and testicular cancers. However, the induction of acute kidney injury (AKI) is one of its main side effects. Leukotriene B4 receptor 1 (BLT1) mediates the majority of physiological effects of leukotriene B4 (LTB4), a potent lipid chemoattractant generated at inflammation sites, but the role of the LTB4-BLT1 axis in cisplatin-induced AKI remains unknown. Here we found upregulated LTB4 synthesis and BLT1 expression in the kidney after cisplatin administration. Cisplatin was found to directly upregulate gene expression of leukotriene A4 hydrolase and stimulate LTB4 production in renal tubular epithelial cells. Reduced kidney structural/functional damage, inflammation, and apoptosis were observed in BLT1-/- mice, as well as in wild-type mice treated with the LTA4H inhibitor SC-57461A and the BLT1 antagonist U-75302. Neutrophils were likely the target of this pathway, as BLT1 absence induced a significant decrease in infiltrating neutrophils in the kidney. Adoptive transfer of neutrophils from wild-type mice restored kidney injury in BLT1-/- mice following cisplatin challenge. Thus, the LTB4-BLT1 axis contributes to cisplatin-induced AKI by mediating kidney recruitment of neutrophils, which induce inflammation and apoptosis in the kidney. Hence, the LTB4-BLT1 axis could be a potential therapeutic target in cisplatin-induced AKI.
Assuntos
Injúria Renal Aguda/metabolismo , Quimiotaxia de Leucócito , Cisplatino , Rim/metabolismo , Leucotrieno B4/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Receptores do Leucotrieno B4/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Transferência Adotiva , Animais , Apoptose , Linhagem Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Predisposição Genética para Doença , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Antagonistas de Leucotrienos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Neutrófilos/transplante , Fenótipo , Receptores do Leucotrieno B4/antagonistas & inibidores , Receptores do Leucotrieno B4/deficiência , Receptores do Leucotrieno B4/genética , Transdução de Sinais , Fatores de TempoRESUMO
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.
Assuntos
Dano ao DNA/genética , Neurônios Dopaminérgicos , Degeneração Neural/genética , Degeneração Neural/patologia , Doença de Parkinson/genética , alfa-Sinucleína/genética , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Transgênicos , Doença de Parkinson/patologiaRESUMO
Deregulation of microRNAs (miRNAs) is essential to tumor development, and serum miRNA profiles have been reported in several cancers. However, the serum miRNA profile in oral squamous cell carcinoma (OSCC) remained unclear. The present study aimed to explore abnormal miRNA profile in sera samples from OSCC patients and the association of miR-483-5p with patient prognosis. Microarray analysis was performed in sera from OSCC patients versus healthy controls. miR-483-5p expression was measured by reverse transcription (RT)-PCR and correlated to clinicopathological characteristics of OSCC patients. The prognostic significance was then evaluated with a Kaplan-Meier curve and log-rank tests, using a Cox proportional hazard model. According to microRNA array, 16 miRNAs were upregulated and 10 were downregulated in OSCC patient sera. miR-483-5p expression was significantly increased in OSCC patients (3.23-fold, p < 0.01), and this was significantly correlated with tumor nodal metastasis (TNM) stage and lymph nodal metastases (p < 0.01, p < 0.01). For predicting OSCC, receiver operating characteristic (ROC)/area under the curve (AUC) analysis confirmed a AUC of 0.85 (sensitivity of 0.853 and specificity of 0.746). OSCC patients with high serum miR-483-5p had lower survival than those with low expression, and multivariate analyses for overall survival revealed that high serum miR-483-5p expression was an independent prognostic factor for OSCC (HR = 2.32, 95 %CI 1.20-4.48). miR-483-5p expression increased in OSCC patient sera, and this may be a novel diagnostic and prognostic biomarker for OSCC.
Assuntos
Carcinoma de Células Escamosas/sangue , MicroRNAs/sangue , MicroRNAs/química , Neoplasias Bucais/sangue , Idoso , Área Sob a Curva , Biomarcadores Tumorais/sangue , Biópsia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/mortalidade , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/mortalidade , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
OBJECTIVES: To observe the effect of penetrating-moxibustion therapy on postpartum uterine involution. METHODS: Eighty puerpera were randomized into an observation group and a control group, 40 cases in each one. In the control group, oxytocin injection was administered by intravenous drip, 20 U each time, once daily. In the observation group, on the base of the treatment as the control group, the penetrating-moxibustion therapy was used at Shenque (GV 8), Qihai (CV 6) and Guanyuan (CV 4), 30 min to 40 min each time, twice a day. The intervention of each group started from the first day after childbirth and lasted 3 days. The uterine volume before and after treatment, and in 42 days of postpartum, the height decrease of the fundus of the uterus, the score of visual analogue scale (VAS) for uterine contraction, the volume of lochia rubra in 1 to 3 days of treatment, and lochia duration were compared between the two groups; and the clinical effect was evaluated. RESULTS: The uterine volume in the observation group was smaller than that of the control group after treatment (P<0.01). In 1 to 3 days of treatment, the height decrease of the fundus of the uterus in the observation group was larger (P<0.01), VAS scores of uterine contraction were lower (P<0.05, P<0.01), the lochia rubra volume was less (P<0.01) than those in the control group. The duration of lochia rubra and lochia was shorter (P<0.01) in the observation group when compared with that of the control group. The favorable rate of uterine involution in the observation group was 95.0% (38/40), higher than that of the control group (75.0%, 30/40, P<0.05). CONCLUSIONS: Penetrating-moxibustion therapy accelerates the recovery of the uterine volume, relieves uterine contraction, shortens the duration of lochia, reduces the lochia volume and promotes the postpartum uterine involution.
Assuntos
Líquidos Corporais , Moxibustão , Gravidez , Feminino , Humanos , Período Pós-Parto , Útero , Parto Obstétrico , Pontos de AcupunturaRESUMO
Combination therapy using photothermal therapy (PTT) and immunotherapy is one of the most promising approaches for eliciting host immune responses to ablate tumors. However, its therapeutic efficacy is limited due to inefficient immune cell infiltration and cellular immune responses. In this study, a biomimetic immunostimulatory nanomodulator, Tm@PDA-GA (4T1 membrane@polydopamine-gambogic acid), with homologous targeting is developed. The 4T1 membrane (Tm) coating reduced immunogenicity and facilitated uptake of Tm@PDA-GA by tumor cells. Polydopamine (PDA) as a drug carrier can induce PTT under near-infrared ray (NIR) irradiation and immunogenic cell death (ICD) to activate dendritic cells (DCs). Moreover, Tm@PDA-GA on-demand released gambogic acid (GA) in an acidic tumor microenvironment, inhibiting the expression of heat shock proteins (HSPs) for synergetic chemo-photothermal anti-tumor activity and increasing the ICD of 4T1 cells. More importantly, GA can normalize the vessels via HIF-1α and VEGF inhibition to enhance immune infiltration and alleviate hypoxia stress. Thus, Tm@PDA-GA induced ICD, activated DCs, stimulated cytotoxic T cells, and suppressed Tregs. Moreover, Tm@PDA-GA is combined with anti-PD-L1 to further augment the tumor immune response and effectively suppress tumor growth and lung metastasis. In conclusion, biomaterial-mediated PTT combined with vessel normalization is a promising strategy for effective immunotherapy of triple-negative breast cancer (TNBC).
Assuntos
Materiais Biomiméticos , Indóis , Terapia Fototérmica , Polímeros , Xantonas , Animais , Xantonas/química , Xantonas/farmacologia , Indóis/química , Indóis/farmacologia , Camundongos , Linhagem Celular Tumoral , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Polímeros/química , Imunoterapia , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Nanopartículas/química , Microambiente Tumoral/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Portadores de Fármacos/química , Raios Infravermelhos , Fototerapia/métodosRESUMO
We aimed to identify HD-Zip (homologous domain leucine zipper) family genes based on the complete Sophora alopecuroides genome sequence. Eighty-six Sophora alopecuroides HD-Zip family (SaHDZ) genes were identified and categorized into four subclasses using phylogenetic analysis. Chromosome localization analysis revealed that these genes were distributed across 18 chromosomes. Gene structure and conserved motif analysis showed high similarity among members of the SaHDZ genes. Prediction analysis revealed 71 cis-acting elements in SaHDZ genes. Transcriptome and quantitative real-time polymerase chain reaction analyses showed that under salt stress, SaHDZ responded positively in S. alopecuroides, and that SaHDZ22 was significantly upregulated afterward. Functional verification experiments revealed that SaHDZ22 overexpression increased the tolerance of Arabidopsis to salt and osmotic stress. Combined with cis-acting element prediction and expression level analysis, HD-Zip family transcription factors may be involved in regulating the balance between plant growth and stress resistance under salt stress by modulating the expression of auxin and abscisic acid signaling pathway genes. The Sophora alopecuroides adenylate kinase protein (SaAKI) and S. alopecuroides tetrapeptide-like repeat protein (SaTPR; pCAMBIA1300-SaTPR-cLUC) expression levels were consistent with those of SaHDZ22, indicating that SaHDZ22 may coordinate with SaAKI and SaTPR to regulate plant salt tolerance. These results lay a foundation in understanding the salt stress response mechanisms of S. alopecuroides and provide a reference for future studies oriented toward exploring plant stress resistance.
RESUMO
The fatty acyl-acyl carrier protein thioesterase B (FATB ) gene, involved in the synthesis of saturated fatty acids, plays an important role in the content of fatty acid and composition of seed storage lipids. However, the role of FATB in soybeans (Glycine max ) has been poorly characterised. This paper presents a preliminary bioinformatics and molecular biological investigation of 10 hypothetical FATB members. The results revealed that GmFATB1B , GmFATB2A and GmFATB2B contain many response elements involved in defense and stress responses and meristem tissue expression. Moreover, the coding sequences of GmFATB1A and GmFATB1B were significantly longer than those of the other genes. Their expression varied in different organs of soybean plants during growth, with GmFATB2A and GmFATB2B showing higher relative expression. In addition, subcellular localisation analysis revealed that they were mainly present in chloroplasts. Overexpression of GmFATB1A , GmFATB1B , GmFATB2A and GmFATB2B in transgenic Arabidopsis thaliana plants increased the seed oil content by 10.3%, 12.5%, 7.5% and 8.4%, respectively, compared to that in the wild-type and led to significant increases in palmitic and stearic acid content. Thus, this research has increased our understanding of the FATB family in soybeans and provides a theoretical basis for subsequent improvements in soybean quality.
Assuntos
Arabidopsis , Ácidos Graxos , Tioléster Hidrolases , Ácidos Graxos/metabolismo , Arabidopsis/genética , Glycine max/genética , Sementes/genéticaRESUMO
BACKGROUND: Polycystic ovary syndrome (PCOS) infertility has attracted great attention from researchers due to its high incidence. Numerous studies have shown that Chinese medicine is effective in treating this disease, but there is a wide variety of Chinese medicine therapies available, and there is a lack of comparative evaluation of the efficacy of various Chinese medicine combination therapies in the clinic, which requires further in-depth exploration. This study aims to evaluate the efficacy of a combined traditional Chinese medicine (TCM) therapy for the treatment of infertility with PCOS using network meta-analysis (NMA). METHODS: In PubMed, web of Science, Cochrane Library, Embase, China Knowledge Network, Wanfang Data, VIP Database, China Biomedical Literature Database (SinoMed) databases, searchs were conducted for information about the randomized controlled trials (RCTs) of combined TCM therapy for the treatment of infertility with PCOS. Quality evaluation was performed using the Cochrane 5.3 risk of bias assessment tool, and NMA using Stata 16.0. RESULTS: This study comprised 28 RCTs using 8 combined TCM therapies in total. The results of the NMA showed that moxibustionâ +â herbal, fire acupunctureâ +â herbal, acupunctureâ +â herbal, electroacupunctureâ +â herbal, and acupoint applicationâ +â herbal improved the clinical pregnancy rate better than acupuncture, herbal, and western medicines monotherapy (Pâ <â .05). Additionally, ear point pressureâ +â herbal enemaâ +â herbal, acupuncture and moxibustionâ +â herbal, fire acupunctureâ +â herbal, and acupunctureâ +â herbal improved the ovulation rate better than acupuncture, herbal, and western medicines monotherapy (Pâ <â .05). Moxibustionâ +â herbal, fire acupunctureâ +â herbal, and acupunctureâ +â herbal are the 3 most effective therapies for improving the clinical pregnancy rate. Fire acupunctureâ +â herbal, acupunctureâ +â herbal, and ear point pressureâ +â herbal enemaâ +â herbal are the 3 most effective therapies for improving the ovulation rate. CONCLUSION: The combined TCM therapy demonstrated better efficacy for the treatment of infertility with PCOS compared to acupuncture, herbal, and western medicines monotherapy. However, the optimal treatment therapy varied depending on the outcome indicators. Further large sample, high-quality, and standardized RCTs are needed to verify these findings.
Assuntos
Infertilidade Feminina , Medicina Tradicional Chinesa , Síndrome do Ovário Policístico , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/terapia , Síndrome do Ovário Policístico/tratamento farmacológico , Feminino , Infertilidade Feminina/terapia , Infertilidade Feminina/etiologia , Infertilidade Feminina/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Terapia Combinada , Metanálise em Rede , Gravidez , Terapia por Acupuntura/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Taxa de GravidezRESUMO
Angiogenesis is a major feature of tumor growth and metastasis. As such, targeting the tumor neovasculature is an attractive strategy for effective cancer therapy. Angiogenesis inhibitors have strong therapeutic potential as antitumor agents in suppressing tumor growth and metastatic progression. Vasostatin, the N-terminal domain of calreticulin, is a potent angiogenesis inhibitor. Our laboratory previously reported a strategy for expression and purification of human vasostatin120-180 (VAS) in a GST-tagged fusion form using Escherichia coli expression system. However, the yield of 7.2 mg per liter of culture was relatively low and the protein activity was also limited. In this study, the biologically active and soluble VAS was cloned and expressed in Pichia pastoris. The yield of the active VAS was about 20 mg/L of the P. pastoris culture medium. The recombinant protein was purified to homogeneity, and confirmed to be biologically active. The recombinant VAS could efficiently inhibit angiogenesis and endothelial cell proliferation in vitro. Moreover, the P. pastoris-derived VAS showed relatively higher protein activity than E. coli-derived VAS. Furthermore, it can inhibit in vivo xenograft tumor growth and prolong the tumor doubling time significantly by inhibiting angiogenesis. Taken together, this is the first report on the heterologous expression of VAS in P. pastoris, and P. pastoris is a highly efficient and cost-effective expression system for large amount production of biologically active recombinant VAS for potential therapeutic application.
Assuntos
Calreticulina/metabolismo , Calreticulina/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sequência de Aminoácidos , Análise de Variância , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sequência de Bases , Calreticulina/genética , Calreticulina/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Angiogenesis is essential for the survival and growth of most tumors. As such, targeting the tumor neovasculature is an attractive strategy for effective cancer therapy. Angiogenesis inhibitors have strong therapeutic potential as antitumor agents in suppressing tumor growth and metastatic progression. The functional domain within amino acid residues 120-180 of vasostatin (VAS) has been confirmed to be effective in inhibiting the proliferation, migration, and invasiveness of cancer cells by its suppressive capacity against angiogenesis. Triptolide (TPL) is an active component extracted from the traditional Chinese herbal medicine Tripterygium wilfordii Hook F that has shown antitumor activities in various cancer cell types. However, its therapeutic application is limited by its toxicity in normal tissues and complications caused in patients. In this study, we attempted to investigate the synergistic antitumor activity of TPL and VAS in solid tumor cells. Our results showed that the sensitivity of combined therapy using TPL and VAS was higher than that of monotherapy using TPL or VAS. Apoptosis induced by the combined treatment was accompanied by activation of caspase-9, caspase-8, and caspase-3. Upregulation of proapoptotic protein (Bax, Bak, and Bad) expression and suppression of NF-κB transcriptional activity and its targeting antiapoptotic genes (c-FLIP, cIAP, Bcl-2, Bcl-xl, and Mcl-1) may contribute to the synergistic effects of this combination therapy. Further, using a mouse xenograft model, we demonstrated that combined treatment completely suppressed tumor growth as compared with treatment with TPL or VAS alone. These results suggest that the combination of TPL and VAS at lower concentrations may produce a synergistic antitumor effect that warrants further investigation for its potential clinical applications.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Calreticulina/uso terapêutico , Diterpenos/uso terapêutico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Fragmentos de Peptídeos/uso terapêutico , Fenantrenos/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Calreticulina/administração & dosagem , Calreticulina/genética , Calreticulina/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Diterpenos/administração & dosagem , Diterpenos/efeitos adversos , Diterpenos/farmacologia , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/química , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/efeitos adversos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Etnofarmacologia , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Fenantrenos/administração & dosagem , Fenantrenos/efeitos adversos , Fenantrenos/farmacologia , Distribuição Aleatória , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Tripterygium/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The present study was to investigate the effects of exogenous insulin-like growth factor binding protein 7 (IGFBP7) on the proliferation of human breast cancer cell line MDA-MB-453 and its possible mechanism. By means of MTT method in vitro, the results showed exogenous IGFBP7 inhibited the growth of MDA-MB-453 cells (IC50 of IGFBP7 = 8.49 µg/mL) in time- and concentration-dependent manner. SB203580, p38(MAPK) inhibitor, blocked the anti-proliferative effect of exogenous IGFBP7. The flow cytometry assay showed that exogenous IGFBP7 remarkably induced G0/G1 arrest in MDA-MB-453 cells. The Western blot showed that exogenous IGFBP7 promoted phosphorylation of p38(MAPK), up-regulated expression of p21(CIP1/WAF1), and inhibited phosphorylation of Rb. SB203580 restrained exogenous IGFBP7-induced regulation of p21(CIP1/WAF1) and p-Rb in MDA-MB-453 cells. In conclusion, the present study suggests that exogenous IGFBP7 could activate the p38(MAPK) signaling pathway, upregulate p21(CIP1/WAF1) expression, inhibit phosphorylation of Rb, and finally induce G0/G1 arrest in MDA-MB-453 cells.
Assuntos
Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Imidazóis/farmacologia , Fosforilação , Piridinas/farmacologia , Transdução de Sinais , Somatomedinas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
OBJECTIVE: To observe the effect of acupuncture and moxibustion on insomnia and explore its mechanism. METHODS: One hundred and twenty patients were randomly divided into an experiment group and a control group. Sixty patients in the experiment group were treated once a day with acupuncture at Baihui (GV 20), Sishencong (EX-HN 1), Shenmai (BL 62), and Zhaohai (KI 6) and with moxibustion at Baihui (GV 20) and Sishencong (EX-HN 1). Sixty patients in the control group were acupunctured once a day at Shenmen (HT 7), Neiguan (PC 6), and Sanyinjiao (SP 6).The Pittsburgh Sleep Quality Index (PSQI) was used to compare sleep improvement between the two groups. RESULTS: The total effective rate was 87.7% in the experiment group and 76.3% in the control group. The PSQI scores and the total score were lower after treatment than before treatment in both groups. However, the reduction in the experiment group was greater than that in the control group in sleeping quality, time to fall asleep, sleeping disorder, and daytime function (P < 0.05). CONCLUSION: Acupuncture and moxibustion at Baihui (GV 20), Sishencong (EX-HN 1), Shenmai (BL 62), and Zhaohai (KI 6) significantly improved insomnia symptoms in the experiment group compared with the control group.