Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Small ; 20(23): e2309180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148304

RESUMO

Stroke is the second leading cause of death worldwide, and hypoxia is a major crisis of the brain after stroke. Therefore, providing oxygen to the brain microenvironment can effectively protect neurons from damage caused by cerebral hypoxia. However, there is a lack of timely and effective means of oxygen delivery clinically to the brain for acute cerebral hypoxia. Here, a phase-change based nano oxygen carrier is reported, which can undergo a phase change in response to increasing temperature in the brain, leading to oxygen release. The nano oxygen carrier demonstrate intracerebral oxygen delivery capacity and is able to release oxygen in the hypoxic and inflammatory region of the brain. In the acute ischemic stroke mouse model, the nano oxygen carrier can effectively reduce the area of cerebral infarction and decrease the level of inflammation triggered by cerebral hypoxia. By taking advantage of the increase in temperature during cerebral hypoxia, phase-change oxygen carrier proposes a new intracerebral oxygen delivery strategy for reducing acute cerebral hypoxia.


Assuntos
Oxigênio , Animais , Oxigênio/química , Oxigênio/metabolismo , Camundongos , Hipóxia Encefálica/metabolismo , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Transição de Fase
2.
Physiol Plant ; 176(2): e14275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566267

RESUMO

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Assuntos
Oryza , Oryza/fisiologia , Perfilação da Expressão Gênica , Estresse Salino , Plântula/fisiologia , Tolerância ao Sal/genética
3.
BMC Plant Biol ; 22(1): 417, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36038847

RESUMO

The primary root is the first organ to perceive the stress signals for abiotic stress. In this study, maize plants subjected to drought, heat and combined stresses displayed a significantly reduced primary root length. Metabolic and transcriptional analyses detected 72 and 5,469 differentially expressed metabolites and genes in response to stress conditions, respectively. The functional annotation of differentially expressed metabolites and genes indicated that primary root development was mediated by pathways involving phenylalanine metabolism, hormone metabolism and signaling under stress conditions. Furthermore, we found that the concentration of salicylic acid and two precursors, shikimic acid and phenylalanine, showed rapid negative accumulation after all three stresses. The expression levels of some key genes involved in salicylic acid metabolism and signal transduction were differentially expressed under stress conditions. This study extends our understanding of the mechanism of primary root responses to abiotic stress tolerance in maize.


Assuntos
Secas , Zea mays , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Fenilalanina/genética , Fenilalanina/metabolismo , Ácido Salicílico/metabolismo , Estresse Fisiológico/genética , Zea mays/metabolismo
4.
Plant Biotechnol J ; 20(6): 1122-1139, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35189026

RESUMO

Melatonin, a natural phytohormone in plants, plays multiple critical roles in plant growth and stress responses. Although melatonin biosynthesis-related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we uncovered the roles of a caffeic acid O-methyltransferase (OsCOMT) gene in mediating rice grain yield through dual regulation of leaf senescence and vascular development. In vitro and in vivo evidence revealed that OsCOMT is involved in melatonin biosynthesis. Transgenic assays suggested that OsCOMT significantly delays leaf senescence at the grain filling stage by inhibiting degradation of chlorophyll and chloroplast, which, in turn, improves photosynthesis efficiency. In addition, the number and size of vascular bundles in the culms and leaves were significantly increased in the OsCOMT-overexpressing plants, while decreased in the knockout plants, suggesting that OsCOMT plays a positive role in vascular development of rice. Further evidence indicated that OsCOMT-mediated vascular development might owe to the crosstalk between melatonin and cytokinin. More importantly, we found that OsCOMT is a positive regulator of grain yield, and overexpression of OsCOMT increase grain yield per plant even in a high-yield variety background, suggesting that OsCOMT can be used as an important target for enhancing rice yield. Our findings shed novel insights into melatonin-mediated leaf senescence and vascular development and provide a possible strategy for genetic improvement of rice grain yield.


Assuntos
Melatonina , Oryza , Grão Comestível , Regulação da Expressão Gênica de Plantas/genética , Melatonina/genética , Melatonina/metabolismo , Metiltransferases , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal
5.
BMC Plant Biol ; 21(1): 346, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301195

RESUMO

BACKGROUND: Root system architecture (RSA), which is determined by the crown root angle (CRA), crown root diameter (CRD), and crown root number (CRN), is an important factor affecting the ability of plants to obtain nutrients and water from the soil. However, the genetic mechanisms regulating crown root traits in the field remain unclear. METHODS: In this study, the CRA, CRD, and CRN of 316 diverse maize inbred lines were analysed in three field trials. Substantial phenotypic variations were observed for the three crown root traits in all environments. A genome-wide association study was conducted using two single-locus methods (GLM and MLM) and three multi-locus methods (FarmCPU, FASTmrMLM, and FASTmrEMMA) with 140,421 SNP. RESULTS: A total of 38 QTL including 126 SNPs were detected for CRA, CRD, and CRN. Additionally, 113 candidate genes within 50 kb of the significant SNPs were identified. Combining the gene annotation information and the expression profiles, 3 genes including GRMZM2G141205 (IAA), GRMZM2G138511 (HSP) and GRMZM2G175910 (cytokinin-O-glucosyltransferase) were selected as potentially candidate genes related to crown root development. Moreover, GRMZM2G141205, encoding an AUX/IAA transcriptional regulator, was resequenced in all tested lines. Five variants were identified as significantly associated with CRN in different environments. Four haplotypes were detected based on these significant variants, and Hap1 has more CRN. CONCLUSIONS: These findings may be useful for clarifying the genetic basis of maize root system architecture. Furthermore, the identified candidate genes and variants may be relevant for breeding new maize varieties with root traits suitable for diverse environmental conditions.


Assuntos
Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Zea mays/anatomia & histologia , Zea mays/genética , China , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas
6.
Plant Biotechnol J ; 19(2): 261-272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32738177

RESUMO

Hybrid breeding has been shown to effectively increase rice productivity. However, identifying desirable hybrids out of numerous potential combinations is a daunting challenge. Genomic selection holds great promise for accelerating hybrid breeding by enabling early selection before phenotypes are measured. With the recent advances in multi-omic technologies, hybrid prediction based on transcriptomic and metabolomic data has received increasing attention. However, the current omic-based hybrid prediction has ignored parental phenotypic information, which is of fundamental importance in plant breeding. In this study, we integrated parental phenotypic information into various multi-omic prediction models applied in hybrid breeding of rice and compared the predictabilities of 15 combinations from four sets of predictors from the parents, that is genome, transcriptome, metabolome and phenome. The predictability for each combination was evaluated using the best linear unbiased prediction and a modified fast HAT method. We found significant interactions between predictors and traits in predictability, but joint prediction with various combinations of the predictors significantly improved predictability relative to prediction of any single source omic data for each trait investigated. Incorporation of parental phenotypic data into various omic predictors increased the predictability, averagely by 13.6%, 54.5%, 19.9% and 8.3%, for grain yield, number of tillers per plant, number of grains per panicle and 1000 grain weight, respectively. Among nine models of incorporating parental traits, the AD-All model was the most effective one. This novel strategy of incorporating parental phenotypic data into multi-omic prediction is expected to improve hybrid breeding progress, especially with the development of high-throughput phenotyping technologies.


Assuntos
Oryza , Hibridização Genética , Modelos Genéticos , Oryza/genética , Fenótipo , Melhoramento Vegetal
7.
J Exp Bot ; 72(13): 4773-4795, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33909071

RESUMO

The primary root is critical for early seedling growth and survival. To understand the molecular mechanisms governing primary root development, we performed a dynamic transcriptome analysis of two maize (Zea mays) inbred lines with contrasting primary root length at nine time points over a 12-day period. A total of 18 702 genes were differentially expressed between two lines or different time points. Gene enrichment, phytohormone content determination, and metabolomics analysis showed that auxin biosynthesis and signal transduction, as well as the phenylpropanoid and flavonoid biosynthesis pathways, were associated with root development. Co-expression network analysis revealed that eight modules were associated with lines/stages, as well as primary or lateral root length. In root-related modules, flavonoid metabolism accompanied by auxin biosynthesis and signal transduction constituted a complex gene regulatory network during primary root development. Two candidate genes (rootless concerning crown and seminal roots, rtcs and Zm00001d012781) involved in auxin signaling and flavonoid biosynthesis were identified by co-expression network analysis, QTL-seq and functional annotation. These results increase our understanding of the regulatory network controlling the development of primary and lateral root length, and provide a valuable genetic resource for improvement of root performance in maize.


Assuntos
Transcriptoma , Zea mays , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais , Zea mays/genética , Zea mays/metabolismo
8.
Theor Appl Genet ; 134(5): 1475-1492, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33661350

RESUMO

KEY MESSAGE: GWAS identified 559 significant SNPs associated with the remodelling of the root architecture in response to salt, and 168 candidate genes were prioritized by integrating RNA-seq, DEG and WGCNA data. Salinity is a major environmental factor limiting crop growth and productivity. The root is the first plant organ to encounter salt stress, yet the effects of salinity on maize root development remain unclear. In this study, the natural variations in 14 root and 4 shoot traits were evaluated in 319 maize inbred lines under control and saline conditions. Considerable phenotypic variations were observed for all traits, with high salt concentrations decreasing the root length, but increasing the root diameter. A genome-wide association study was conducted to analyse these traits and their plasticity (relative variation). We detected 559 significant single nucleotide polymorphisms, of which 125, 181 and 253 were associated with the control condition, stress condition and trait plasticity, respectively. A total of 168 of 587 candidate genes identified by genome-wide association study were supported by the differentially expressed genes or co-expression networks. Two candidate genes ZmIAA1 and ZmGRAS43 were validated by resequencing. Among these genes, 130 were detected under stress condition or trait plasticity that involved in diverse biological processes including plant hormone signal transduction, phenylpropanoid biosynthesis and fatty acid biosynthesis. Our findings clarify the root remodelling to salinity, and the identified loci and candidate genes may be important for the genetic improvement of root traits and salt tolerance in maize.


Assuntos
Cromossomos de Plantas/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estresse Salino , Zea mays/genética , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Genética Populacional , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Zea mays/fisiologia
9.
BMC Plant Biol ; 20(1): 30, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959100

RESUMO

BACKGROUND: Nicotiana tabacum is an important economic crop. Topping, a common agricultural practice employed with flue-cured tobacco, is designed to increase leaf nicotine contents by increasing nicotine biosynthesis in roots. Many genes are found to be differentially expressed in response to topping, particularly genes involved in nicotine biosynthesis, but comprehensive analyses of early transcriptional responses induced by topping are not yet available. To develop a detailed understanding of the mechanisms regulating nicotine biosynthesis after topping, we have sequenced the transcriptomes of Nicotiana tabacum roots at seven time points following topping. RESULTS: Differential expression analysis revealed that 4830 genes responded to topping across all time points. Amongst these, nine gene families involved in nicotine biosynthesis and two gene families involved in nicotine transport showed significant changes during the immediate 24 h period following topping. No obvious preference to the parental species was detected in the differentially expressed genes (DEGs). Significant changes in transcript levels of nine genes involved in nicotine biosynthesis and phytohormone signal transduction were validated by qRT-PCR assays. 549 genes encoding transcription factors (TFs), found to exhibit significant changes in gene expression after topping, formed 15 clusters based on similarities of their transcript level time-course profiles. 336 DEGs involved in phytohormone signal transduction, including genes functionally related to the phytohormones jasmonic acid, abscisic acid, auxin, ethylene, and gibberellin, were identified at the earliest time point after topping. CONCLUSIONS: Our research provides the first detailed analysis of the early transcriptional responses to topping in N. tabacum, and identifies excellent candidates for further detailed studies concerning the regulation of nicotine biosynthesis in tobacco roots.


Assuntos
Genes de Plantas , Nicotiana/genética , Nicotina/biossíntese , Transcriptoma , Produção Agrícola/métodos , Perfilação da Expressão Gênica , Raízes de Plantas/metabolismo , Nicotiana/metabolismo
10.
New Phytol ; 227(5): 1417-1433, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32433775

RESUMO

Plants maintain a dynamic balance between plant growth and stress tolerance to optimise their fitness and ensure survival. Here, we investigated the roles of a clade A type 2C protein phosphatase (PP2C)-encoding gene, OsPP2C09, in regulating the trade-off between plant growth and drought tolerance in rice (Oryza sativa L.). The OsPP2C09 protein interacted with the core components of abscisic acid (ABA) signalling and showed PP2C phosphatase activity in vitro. OsPP2C09 positively affected plant growth but acted as a negative regulator of drought tolerance through ABA signalling. Transcript and protein levels of OsPP2C09 were rapidly induced by exogenous ABA treatments, which suppressed excessive ABA signalling and plant growth arrest. OsPP2C09 transcript levels in roots were much higher than those in shoots under normal conditions. After ABA, polyethylene glycol and dehydration treatments, the accumulation rate of OsPP2C09 transcripts in roots was more rapid and greater than that in shoots. This differential expression between the roots and shoots may increase the plant's root-to-shoot ratio under drought-stress conditions. This study sheds new light on the roles of OsPP2C09 in coordinating plant growth and drought tolerance. In particular, we propose that OsPP2C09-mediated ABA desensitisation contributes to root elongation under drought-stress conditions in rice.


Assuntos
Oryza , Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
11.
Heredity (Edinb) ; 124(1): 122-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31358987

RESUMO

Seed filling is a dynamic process that determines seed size and nutritional quality. This time-dependent trait follows a logistic (S-shaped) growth curve that can be described by a logistic function, with parameters of biological relevance. When compared between genotypes, the filling dynamics variations are explained by the differences of parameter values; as such, the parameter estimates can be considered as "traits" for genetic analysis to identify loci that are associated with the seed-filling process. We carried out genetic and genomic analysis of the seed-filling process in maize, using a recombinant inbred line (RIL) population derived from the two inbred lines with contrasting seed-filling dynamics. We recorded seed dry weight at 14 time points after pollination, spanning the early filling phases to the late maturation stages. Fitting these data to a logistic model allowed for estimating 12 characteristic parameters that can be used to meaningfully describe the seed-filling process. Quantitative trait locus (QTL) mapping of these parameters identified a total of 90 nonredundant loci. Using bulked segregant RNA-sequencing (BSR-seq) analysis, we identified eight genes that showed differential gene expression patterns at multiple time points between the extreme pools, and these genes co-localize with the mapped QTL regions. Two of the eight genes, GRMZM2G391936 and GRMZM2G008263, are implicated in starch and sucrose metabolism, and biosynthesis of secondary metabolites that are well known for playing a vital role in seed filling. This study suggests that the logistic model-based approach can efficiently identify genetic loci that regulate dynamic developing traits.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Modelos Logísticos , Fenótipo , Zea mays/crescimento & desenvolvimento
12.
Planta ; 249(3): 879-889, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30460404

RESUMO

MAIN CONCLUSION: Eight variants in ZmHKT1 promoter were significantly associated with root diameter, four haplotypes based on these significant variants were found, and Hap2 has the largest root diameter. Roots play an important role in uptake of water, nutrients and plant anchorage. Identification of gene and corresponding SNPs associated with root traits would enable develop maize lines with better root traits that might help to improve capacity for absorbing nutrients and water acquisition. The genomic sequences of a salt tolerance gene ZmHKT1 was resequenced in 349 maize inbred lines, and the association between nucleotide polymorphisms and seedling root traits was detected. A total of 269 variants in ZmHKT1 were identified, including 226 single nucleotide polymorphisms and 43 insertions and deletions. The gene displayed high level of nucleotide diversity, especially in non-genic regions. A total of 19 variations in untranslated region of ZmHKT1 were found to be associated with six seedling traits. Eight variants in promoter region were significantly associated with average root diameter (ARD), four haplotypes were found based on these significant variants, and Hap2 has the largest ARD. Two SNPs in high-linkage disequilibrium (SNP-415 and SNP 2169) with pleiotropic effects were significantly associated with plant height, root surface area, root volume, and shoot dry weight. This result revealed that ZmHKT1 was an important contributor to the phenotypic variations of seedling root traits in maize, these significant variants could use to develop functional markers to improve root traits.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Zea mays/genética , Proteínas de Transporte de Cátions/fisiologia , Estudos de Associação Genética , Variação Genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento
13.
Plant Biotechnol J ; 17(3): 650-664, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30160362

RESUMO

Heterotrimeric G proteins, which consist of Gα , Gß and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ -encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2-1 and zrgg2-2, exhibited enhanced growth, including elongated internodes, increased 1000-grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3 ) treatment and the GA-induced α-amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Subunidades gama da Proteína de Ligação ao GTP/genética , Oryza/genética , Proteínas de Plantas/genética , Sistemas CRISPR-Cas , Grão Comestível/genética , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
14.
Plant Physiol ; 178(4): 1522-1536, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30190417

RESUMO

Polyamines, including putrescine, spermidine, and spermine, play essential roles in a wide variety of prokaryotic and eukaryotic organisms. Rice (Oryza sativa) contains four putative spermidine/spermine synthase (SPMS)-encoding genes (OsSPMS1, OsSPMS2, OsSPMS3, and OsACAULIS5), but none have been functionally characterized. In this study, we used a reverse genetic strategy to investigate the biological function of OsSPMS1 We generated several homozygous RNA interference (RNAi) and overexpression (OE) lines of OsSPMS1 Phenotypic analysis indicated that OsSPMS1 negatively regulates seed germination, grain size, and grain yield per plant. The ratio of spermine to spermidine was significantly lower in the RNAi lines and considerably higher in the OE lines than in the wild type, suggesting that OsSPMS1 may function as a SPMS. S-Adenosyl-l-methionine is a common precursor of polyamines and ethylene biosynthesis. The 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene contents in seeds increased significantly in RNAi lines and decreased in OE lines, respectively, compared with the wild type. Additionally, the reduced germination rates and growth defects of OE lines could be rescued with ACC treatment. These data suggest that OsSPMS1 affects ethylene synthesis and may regulate seed germination and plant growth by affecting the ACC and ethylene pathways. Most importantly, an OsSPMS1 knockout mutant showed an increase in grain yield per plant in a high-yield variety, Suken118, suggesting that OsSPMS1 is an important target for yield enhancement in rice.


Assuntos
Germinação/fisiologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Espermina Sintase/metabolismo , Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza/enzimologia , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Espermina Sintase/genética
15.
Mol Phylogenet Evol ; 138: 205-218, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132519

RESUMO

Colonization of the land by plants was a critical event in the establishment of modern terrestrial ecosystems, and many characteristics of land plants originated during this process, including the emergence of rosette terminal cellulose-synthesizing complexes. Cellulases are non-homologous isofunctional enzymes, encoded by glycosyl hydrolase (GH) gene families. Although the plant GH5_11 gene subfamily is presumed to encode a cell-wall degrading enzyme, its evolutionary and functional characteristics remain unclear. In the present study, we report the evolution of the land plant GH5_11 subfamily, and the functions of its members in terms of cellulase activity, through comprehensive phylogenetic analyses and observation of Arabidopsis mutants. Phylogenetic and sequence similarity analyses reveal that the ancestor of land plants acquired the GH5_11 gene from fungi through a horizontal gene transfer (HGT) event. Subsequently, positive selection with massive gene duplication and loss events contributed to the evolution of this subfamily in land plants. In Arabidopsis and rice, expression of GH5_11 genes are regulated by multiple abiotic stresses, the duplicated genes showing different patterns of expression. The Arabidopsis mutants atgh5_11a and atgh5_11c display low levels of cellulase and endoglucanase activities, with correspondingly high levels of cellulose, implying that the encoded proteins may function as endoglucanases. However, atgh5_11a and atgh5_11c also display an enlarged rosette leaf phenotype, and atgh5_11c is late-flowering under short photoperiods. These observations suggest that plant GH5_11s possess more functions beyond being endonucleases. To summarize, we demonstrate that the ancestor of land plants has acquired GH5_11 gene through HGT, which extends the cellulose degradation complexity. Our investigations illuminate features of part of the molecular framework underlying the origin of land plants and provide a focus on the cellulose degradation pathway.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Evolução Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Celulose/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Transferência Genética Horizontal/genética , Genes de Plantas , Mutagênese/genética , Mutação/genética , Fenótipo , Filogenia , Seleção Genética
16.
Breed Sci ; 69(3): 420-428, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598074

RESUMO

Yield improvement is a top priority for maize breeding. Kernel size and weight are important determinants of maize grain yield. In this study, a recombinant inbred line (RIL) population and an association panel were used to identify quantitative trait loci (QTLs) for four maize kernel-related traits: kernel length, width, thickness and 100-kernel weight. Twenty-seven QTLs were identified for kernel-related traits across three environments and the best linear unbiased predictions (BLUPs) of each trait by linkage analysis, and four QTLs were stably detected in more than two environments. Additionally, 29 single nucleotide polymorphisms (SNPs) were identified as significantly associated with the four kernel-related traits and BLUPs by genome-wide association study, and two loci could be stably detected in both environments. In total, four QTLs/SNPs were co-associated with various traits in both populations. Using combined-linkage analysis and association mapping, PZE-101066560 on chromosome 1, associated with kernel width and with 100-kernel weight in the association panel, was co-localized within the QTL interval of qKW1-3 for kernel width in the RILs. Two annotated genes in the candidate region were considered as potential candidate genes. The QTLs and candidate genes identified here will facilitate molecular breeding for grain yield improvement in maize.

17.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775351

RESUMO

Reducing nitrogen (N) input is a key measure to achieve a sustainable rice production in China, especially in Jiangsu Province. Tiller is the basis for achieving panicle number that plays as a major factor in the yield determination. In actual production, excessive N is often applied in order to produce enough tillers in the early stages. Understanding how N regulates tillering in rice plants is critical to generate an integrative management to reduce N use and reaching tiller number target. Aiming at this objective, we utilized RNA sequencing and weighted gene co-expression network analysis (WGCNA) to compare the transcriptomes surrounding the shoot apical meristem of indica (Yangdao6, YD6) and japonica (Nipponbare, NPB) rice subspecies. Our results showed that N rate influenced tiller number in a different pattern between the two varieties, with NPB being more sensitive to N enrichment, and YD6 being more tolerant to high N rate. Tiller number was positively related to N content in leaf, culm and root tissue, but negatively related to the soluble carbohydrate content, regardless of variety. Transcriptomic comparisons revealed that for YD6 when N rate enrichment from low (LN) to medium (MN), it caused 115 DEGs (LN vs. MN), from MN to high level (HN) triggered 162 DEGs (MN vs. HN), but direct comparison of low with high N rate showed a 511 DEGs (LN vs. HN). These numbers of DEG in NPB were 87 (LN vs. MN), 40 (MN vs. HN), and 148 (LN vs. HN). These differences indicate that continual N enrichment led to a bumpy change at the transcription level. For the reported sixty-five genes which affect tillering, thirty-six showed decent expression in SAM at tiller starting phase, among them only nineteen being significantly influenced by N level, and two genes showed significant interaction between N rate and variety. Gene ontology analysis revealed that the majority of the common DEGs are involved in general stress responses, stimulus responses, and hormonal signaling process. WGCNA network identified twenty-two co-expressing gene modules and ten candidate hubgenes for each module. Several genes associated with tillering and N rate fall on the related modules. These indicate that there are more genes participating in tillering regulation in response to N enrichment.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Meristema/genética , Nitrogênio/farmacologia , Oryza/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Transcriptoma , Perfilação da Expressão Gênica , Meristema/efeitos dos fármacos , Oryza/classificação , Oryza/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Análise de Sequência de RNA
18.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491955

RESUMO

Japonica and indica are two important subspecies in cultivated Asian rice. Irradiation is a classical approach to induce mutations and create novel germplasm. However, little is known about the differential response between japonica and indica rice after γ radiation. Here, we utilized the RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA) to compare the transcriptome differences between japonica Nipponbare (NPB) and indica Yangdao6 (YD6) in response to irradiation. Japonica subspecies are more sensitive to irradiation than the indica subspecies. Indica showed a higher seedling survival rate than japonica. Irradiation caused more extensive DNA damage in shoots than in roots, and the severity was higher in NPB than in YD6. GO and KEGG pathway analyses indicate that the core genes related to DNA repair and replication and cell proliferation are similarly regulated between the varieties, however the universal stress responsive genes show contrasting differential response patterns in japonica and indica. WGCNA identifies 37 co-expressing gene modules and ten candidate hub genes for each module. This provides novel evidence indicating that certain peripheral pathways may dominate the molecular networks in irradiation survival and suggests more potential target genes in breeding for universal stress tolerance in rice.


Assuntos
Raios gama , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes , Oryza/genética , Oryza/efeitos da radiação , Transcriptoma , Biologia Computacional/métodos , Dano ao DNA/genética , Perfilação da Expressão Gênica , Ontologia Genética , Tolerância a Radiação/genética , Plântula/genética , Plântula/efeitos da radiação
20.
Theor Appl Genet ; 131(3): 637-648, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29299612

RESUMO

KEY MESSAGE: A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Mapeamento Cromossômico , Citocininas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Oryza/crescimento & desenvolvimento , Fenótipo , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA