Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(3): 036402, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540867

RESUMO

In this Letter, we introduce the concept of dynamical degeneracy splitting to describe the anisotropic decay behaviors in non-Hermitian systems. We demonstrate that systems with dynamical degeneracy splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin effect; (ii) Green's function exhibits anomalous behavior at given frequency, leading to uneven broadening in spectral function and anomalous scattering. As an application, we propose directional invisibility based on wave packet dynamics to investigate the geometry-dependent skin effect in higher dimensions. Our work elucidates a faithful correspondence between non-Hermitian skin effect and Green's function, offering a guiding principle for exploration of novel physical phenomena emerging from this effect.

2.
Phys Rev Lett ; 126(8): 086401, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709728

RESUMO

The fermion doubling theorem plays a pivotal role in Hermitian topological materials. It states, for example, that Weyl points must come in pairs in three-dimensional semimetals. Here, we present an extension of the doubling theorem to non-Hermitian lattice Hamiltonians. We focus on two-dimensional non-Hermitian systems without any symmetry constraints, which can host two different types of topological point nodes, namely, (i) Fermi points and (ii) exceptional points. We show that these two types of protected point nodes obey doubling theorems, which require that the point nodes come in pairs. To prove the doubling theorem for exceptional points, we introduce a generalized winding number invariant, which we call the "discriminant number." Importantly, this invariant is applicable to any two-dimensional non-Hermitian Hamiltonian with exceptional points of arbitrary order and, moreover, can also be used to characterize nondefective degeneracy points. Furthermore, we show that a surface of a three-dimensional system can violate the non-Hermitian doubling theorems, which implies unusual bulk physics.

3.
Phys Rev Lett ; 126(8): 086801, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709754

RESUMO

We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Because of the strong energy and density fluctuations caused by the superconducting proximity effect, the Floquet Majorana wire becomes dissipative. We show that the Floquet band structure is still preserved in this dissipative system. In particular, we find that the Floquet Majorana zero and π modes can no longer be simply described by the Floquet topological band theory. We also propose an effective model to simplify the calculation of the lifetime of these Floquet Majoranas and find that the lifetime can be engineered by the external driving field.

4.
Phys Rev Lett ; 125(18): 186802, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196238

RESUMO

In this Letter, we study the conditions under which on-site dissipations can induce non-Hermitian skin modes in non-Hermitian systems. When the original Hermitian Hamiltonian has spinless time-reversal symmetry, it is impossible to have skin modes; on the other hand, if the Hermitian Hamiltonian has spinful time-reversal symmetry, skin modes can be induced by on-site dissipations under certain circumstances. As a concrete example, we employ the Rice-Mele model to illustrate our results. Furthermore, we predict that the skin modes can be detected by the chiral tunneling effect; that is, the tunneling favors the direction where the skin modes are localized. Our Letter reveals a no-go theorem for the emergence of skin modes and paves the way for searching for quantum systems with skin modes and studying their novel physical responses.

5.
Phys Rev Lett ; 125(12): 126402, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016766

RESUMO

We establish exact relations between the winding of "energy" (eigenvalue of Hamiltonian) on the complex plane as momentum traverses the Brillouin zone with periodic boundary condition, and the presence of "skin modes" with open boundary conditions in non-Hermitian systems. We show that the nonzero winding with respect to any complex reference energy leads to the presence of skin modes, and vice versa. We also show that both the nonzero winding and the presence of skin modes share the common physical origin that is the nonvanishing current through the system.

6.
Phys Rev Lett ; 125(22): 226402, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315431

RESUMO

We provide a systematic and self-consistent method to calculate the generalized Brillouin zone (GBZ) analytically in one-dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-band non-Hermitian Hamiltonian is constituted by n distinct sub-GBZs, each of which is a piecewise analytic closed loop. Based on the concept of resultant, we can show that all the analytic properties of the GBZ can be characterized by an algebraic equation, the solution of which in the complex plane is dubbed as auxiliary GBZ (aGBZ). We also provide a systematic method to obtain the GBZ from aGBZ. Two physical applications are also discussed. Our method provides an analytic approach to the spectral problem of open boundary non-Hermitian systems in the thermodynamic limit.

7.
Phys Rev Lett ; 124(18): 186402, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441967

RESUMO

Topological nodal line semimetals host stable chained, linked, or knotted line degeneracies in momentum space protected by symmetries. In this Letter, we use the Jones polynomial as a general topological invariant to capture the global knot topology of the oriented nodal lines. We show that every possible change in Jones polynomial is attributed to the local evolutions around every point where two nodal lines touch. As an application of our theory, we show that nodal chain semimetals with four touching points can evolve to a Hopf link. We extend our theory to 3D non-Hermitian multiband exceptional line semimetals. Our work provides a recipe to understand the transition of the knot topology for protected nodal lines.

8.
Sci Bull (Beijing) ; 68(20): 2330-2335, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37741745

RESUMO

The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian systems, which manifests as the anomalous localization of bulk states at the boundary. To understand the physical origin of the non-Hermitian skin effect, a bulk band characterization based on the dynamical degeneracy on an equal frequency contour is proposed, which reflects the strong anisotropy of the spectral function. In this paper, we report the experimental observation of a newly-discovered geometry-dependent non-Hermitian skin effect and dynamical degeneracy splitting in a two-dimensional acoustic crystal and reveal their remarkable correspondence by performing single-frequency excitation measurements. Our work not only provides a controllable experimental platform for studying the non-Hermitian physics, but also confirms the unique correspondence between the non-Hermitian skin effect and the dynamical degeneracy splitting, paving a new way to characterize the non-Hermitian skin effect.

9.
Nat Commun ; 13(1): 2496, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523795

RESUMO

Skin effect, experimentally discovered in one dimension, describes the physical phenomenon that on an open chain, an extensive number of eigenstates of a non-Hermitian Hamiltonian are localized at the end(s) of the chain. Here in two and higher dimensions, we establish a theorem that the skin effect exists, if and only if periodic-boundary spectrum of the Hamiltonian covers a finite area on the complex plane. This theorem establishes the universality of the effect, because the above condition is satisfied in almost every generic non-Hermitian Hamiltonian, and, unlike in one dimension, is compatible with all point-group symmetries. We propose two new types of skin effect in two and higher dimensions: the corner-skin effect where all eigenstates are localized at corners of the system, and the geometry-dependent-skin effect where skin modes disappear for systems of a particular shape, but appear on generic polygons. An immediate corollary of our theorem is that any non-Hermitian system having exceptional points (lines) in two (three) dimensions exhibits skin effect, making this phenomenon accessible to experiments in photonic crystals, Weyl semimetals, and Kondo insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA