Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 432(2): 113794, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741491

RESUMO

Low back pain (LBP) is the leading cause of disability worldwide, with a strong correlation to intervertebral disc degeneration (IDD). Inflammation-induced extracellular matrix (ECM) degradation plays a major role in IDD's progression. Emodin, known for its anti-inflammatory effects and ability to inhibit ECM degradation in osteoarthritis, but its role in IDD is unclear. Our study aimed to explore emodin's role and mechanisms on IDD both in vivo and in vitro. We discovered that emodin positively regulated anabolic markers (COL2A1, aggrecan) and negatively impacted catabolic markers (MMP3, MMP13) in nucleus pulposus cells, while also inhibiting cell apoptosis under inflammation environment. We revealed that emodin inhibits inflammation-induced NF-ĸB activation by suppressing the degradation of LRP1 via the proteasome pathway. Additionally, LRP1 was validated as essential to emodin's regulation of ECM metabolism and apoptosis, both in vitro and in vivo. Ultimately, we demonstrated that emodin effectively alleviates IDD in a rat model. Our findings uncover the novel pathway of emodin inhibiting ECM degradation and apoptosis through the inhibition of NF-κB via LRP1, thus alleviating IDD. This study not only broadens our understanding of emodin's role and mechanism in IDD treatment but also guides future therapeutic interventions.

2.
J Orthop Surg Res ; 19(1): 308, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773639

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE: The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN: To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD: The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT: Pretreatment with phillyrin significantly inhibited the IL-1ß-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION: Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.


Assuntos
Progressão da Doença , Degeneração do Disco Intervertebral , NF-kappa B , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Modelos Animais de Doenças , Células Cultivadas , Humanos , Apoptose/efeitos dos fármacos
3.
Cell Signal ; 114: 110986, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38007189

RESUMO

Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.


Assuntos
Degeneração do Disco Intervertebral , Doenças Mitocondriais , Humanos , Degeneração do Disco Intervertebral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Inflamação
4.
Biomed Res Int ; 2023: 9466110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820222

RESUMO

In response to current trends in the modification of guided bone regeneration (GBR) materials, we aimed to build upon our previous studies on epigallocatechin-3-gallate (EGCG) by immersing a commonly used bone graft primarily composed of hydroxyapatite (HA) in EGCG solution, expecting to obtain superior bone material integration after implantation. Bone grafts are commonly used for bone repair, in which the bone extracellular matrix is stimulated to promote osteogenesis. However, due to its profibrosis effect, this osteoconductive material commonly exhibits implant failure. In addition to providing a basic release profile of EGCG-modified bone graft (E-HA) to clarify the relationship between this material and the environment, we have examined the integration effect via subcutaneous implantation experiments. In this manner, we have assessed the aggregation of proinflammatory macrophages, the formation of fibrous capsules, and an enhanced cell viability observed in cultured RAW 264.7 cells. Among these results, we focus on proinflammatory macrophages due to their close relationship with fibrosis, which is the most important process in the immune response. Immunofluorescent staining results showed that E-HA substantially compromised the formation of fibrous capsules in hematoxylin-eosin-stained sections, which exhibited less proinflammatory macrophage recruitment; meanwhile, the cell viability was improved. This work lays the foundation for future studies on GBR.


Assuntos
Catequina , Osteogênese , Camundongos , Animais , Modelos Animais de Doenças , Cápsulas/farmacologia , Regeneração Óssea/fisiologia , Macrófagos , Catequina/farmacologia , Durapatita/farmacologia
5.
NPJ Precis Oncol ; 7(1): 62, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386055

RESUMO

Postoperative recurrence and metastasis are the main reasons for the poor prognosis of osteosarcoma (OS). Currently, an ideal predictor for not only prognosis but also drug sensitivity and immunotherapy responses in OS patients is urgently needed. Angiogenesis plays a crucial role in tumour progression, which suggests its immense potential for predicting prognosis and responses to immunotherapy for OS. Angiogenesis patterns in OS were explored in depth in this study to construct a prognostic model called ANGscore and clarify the underlying mechanism involved in the immune microenvironment. The efficacy and robustness of the model were validated in multiple datasets, including bulk RNA-seq datasets (TARGET-OS, GSE21257), a single-cell RNA-seq dataset (GSE152048) and immunotherapy-related datasets (GSE91061, GSE173839). OS patients with a high ANGscore had a worse prognosis, accompanied by the immune desert phenotype. Pseudotime and cellular communication analyses in scRNA-seq data revealed that as the ANGscore increased, the malignant degree of cells increased, and IFN-γ signalling was involved in tumour progression and regulation of the tumour immune microenvironment. Furthermore, the ANGscore was associated with immune cell infiltration and the response rate to immunotherapy. OS patients with high ANGscore might be resistant to uprosertib, and be sensitive to VE821, AZD6738 and BMS.345541. In conclusion, we established a novel ANGscore system by comprehensively analysing the expression pattern of angiogenesis genes, which can accurately differentiate the prognosis and immune characteristics of OS populations. Additionally, the ANGscore can be used for patient stratification during immunotherapy, and guide individualized treatment strategies.

6.
Arthritis Res Ther ; 25(1): 45, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945021

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is one of the most common disorders related to the spine. Inflammation, apoptosis and extracellular matrix (ECM) degradation contribute to disc degeneration in nucleus pulposus cells (NPCs). This study focused on the role and mechanism of the p38 inhibitor TAK-715 in intervertebral disc degeneration. METHODS: NPCs were treated with IL-1ß to mimic apoptosis, followed by the addition of TAK-715. It was determined that apoptosis, inflammatory mediators (COX-2), inflammatory cytokines (HMGB1), and ECM components (collagen II, MMP9, ADAMTS5, and MMP3) existed in NPCs. In addition, the p38MAPK signaling pathways were examined. The role of TAK-715 in vivo was determined by acupuncture-induced intervertebral disc degeneration. Following an intradiscal injection of TAK-715, MRI and a histopathological analysis were conducted to assess the degree of degeneration. RESULTS: IL-1ß-induced apoptosis was alleviated by TAK-715 in vitro, and antiapoptotic proteins were upregulated. Furthermore, TAK-715 blocked IL-1ß-induced inflammatory mediator production (COX-2) and inflammatory cytokine production (HMGB1) and degraded the ECM (collagen II, MMP9, ADAMTS5, and MMP3). By inhibiting the phosphorylation of p38, TAK-715 exerted its effects. In a rat tail model, TAK-715 ameliorates puncture-induced disc degeneration based on MRI and histopathology evaluations. CONCLUSION: TAK-715 attenuated intervertebral disc degeneration in vitro and in vivo, suggesting that it might be an effective treatment for IDD.


Assuntos
Apoptose , Benzamidas , Matriz Extracelular , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Ciclo-Oxigenase 2/metabolismo , Proteína HMGB1/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Núcleo Pulposo/citologia , Núcleo Pulposo/patologia , Interleucina-1beta/farmacologia , Matriz Extracelular/patologia , Benzamidas/farmacologia
7.
Biomed Res Int ; 2021: 9910596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722776

RESUMO

Macrophages are important immune cells that participate in the regulation of inflammation in implant dentistry, and their activation/polarization state is considered to be the basis for their functions. The classic dichotomy activation model is commonly accepted, however, due to the discovery of macrophage heterogeneity and more functional and iconic exploration at different technologies; some studies have discovered the shortcomings of the dichotomy model and have put forward the concept of alternative activation models through the application of advanced technologies such as cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), and hyperspectral image (HSI). These alternative models have great potential to help macrophages divide phenotypes and functional genes.


Assuntos
Ativação de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/fisiologia , Animais , Implantação Dentária/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Ativação de Macrófagos/fisiologia , Macrófagos/imunologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA