Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 297, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268959

RESUMO

BACKGROUND: Iva xanthiifolia, native to North America, is now widely distributed in northeastern China and has become a vicious invasive plant. This article aims to probe the role of leaf extract in the invasion of I. xanthiifolia. METHODS: We collected the rhizosphere soil of Amaranthus tricolor and Setaria viridis in the invasive zone, the noninvasive zone and the noninvasive zone treated with extract from I. xanthiifolia leaf, and obtained I. xanthiifolia rhizosphere soil in the invasive zone. All wild plants were identified by Xu Yongqing. I. xanthiifolia (collection number: RQSB04100), A. tricolor (collection number: 831,030) and S. viridis (collection number: CF-0002-034) are all included in Chinese Virtual Herbarium ( https://www.cvh.ac.cn/index.php ). The soil bacterial diversity was analyzed based on the Illumina HiSeq sequencing platform. Subsequently, taxonomic analysis and Faprotax functional prediction were performed. RESULTS: The results showed that the leaf extract significantly reduced the diversity of indigenous plant rhizosphere bacteria. A. tricolor and S. viridis rhizobacterial phylum and genus abundances were significantly reduced under the influence of I. xanthiifolia or its leaf extract. The results of functional prediction showed that bacterial abundance changes induced by leaf extracts could potentially hinder nutrient cycling in native plants and increased bacterial abundance in the A. tricolor rhizosphere related to aromatic compound degradation. In addition, the greatest number of sensitive Operational Taxonomic Units (OTUs) appeared in the rhizosphere when S. viridis was in response to the invasion of I. xanthiifolia. It can be seen that A. tricolor and S. viridis have different mechanisms in response to the invasion of I. xanthiifolia. CONCLUSION: I. xanthiifolia leaves material has potential role in invasion by altering indigenous plant rhizosphere bacteria.


Assuntos
Bactérias , Rizosfera , China , Solo , Extratos Vegetais , Microbiologia do Solo , Raízes de Plantas/microbiologia
2.
PLoS One ; 13(3): e0195138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596529

RESUMO

Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars-the cold-sensitive 'Chinese Spring (CS)' and the cold-tolerant 'Dongnongdongmai 1 (D1)' cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Estresse Fisiológico , Triticum/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/classificação , RNA de Plantas , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA