RESUMO
The dynamic transcriptional regulation and interactions of human germlines and surrounding somatic cells during folliculogenesis remain unknown. Using RNA sequencing (RNA-seq) analysis of human oocytes and corresponding granulosa cells (GCs) spanning five follicular stages, we revealed unique features in transcriptional machinery, transcription factor networks, and reciprocal interactions in human oocytes and GCs that displayed developmental-stage-specific expression patterns. Notably, we identified specific gene signatures of two cell types in particular developmental stage that may reflect developmental competency and ovarian reserve. Additionally, we uncovered key pathways that may concert germline-somatic interactions and drive the transition of primordial-to-primary follicle, which represents follicle activation. Thus, our work provides key insights into the crucial features of the transcriptional regulation in the stepwise folliculogenesis and offers important clues for improving follicle recruitment in vivo and restoring fully competent oocytes in vitro.
Assuntos
Comunicação Celular/genética , Células da Granulosa/fisiologia , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Reserva Ovariana/genética , Transcriptoma , Adulto , Animais , Biologia Computacional , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Camundongos , Folículo Ovariano/citologia , Transdução de Sinais/genética , Análise de Célula Única , Especificidade da Espécie , Transcrição Gênica , Adulto JovemRESUMO
Skeletal muscle consists of different muscle fiber types whose heterogeneity is characterized by different metabolic patterns and expression of MyHC isomers. The transformation of muscle fiber types is regulated by a complex molecular network in which long noncoding (lnc) RNAs play an important role. In this study, we found that lnc-H19 is more enriched in slow muscle fibers. In vitro, interference of lnc-H19 by siRNA significantly promoted the expression of fast muscle fiber gene MyHC IIB and inhibited the expression of the slow muscle fiber gene MyHC I, thereby leading to a fast muscle fiber phenotype. In addition, interference of lnc-H19 significantly inhibited mRNA expression of the mitochondrial genes, such as COX5A, COX-2, UQCRFSL, FABP3, and CD36. Overexpression of lnc-H19 resulted in an opposite result. In vivo, knockdown of lnc-H19 by AAV-shRNA-H19 suppressed the mRNA expression of the slow muscle fiber gene MyHC I and the protein expression of slow-MyHC. Simultaneously, mitochondria were reduced in number, swollen, and vacuolated. The activities of succinate dehydrogenase, lactic dehydrogenase, and superoxide dismutase were significantly inhibited, and malondialdehyde content was significantly increased, indicating that deficiency of lnc-H19 leads to decreased oxidative metabolism and antioxidant capacity in muscle. Furthermore, inhibition of lnc-H19 decreased the weight-bearing swimming time and limb suspension time of mice. In conclusion, our results revealed the role of lnc-H19 in maintaining slow muscle fiber types and maintaining exercise endurance, which may help to further improve the regulatory network of lnc-H19 in muscle function.
Assuntos
RNA Longo não Codificante , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Masculino , Linhagem Celular , Camundongos Endogâmicos C57BLRESUMO
Terrestrial ecosystem resilience is crucial for maintaining the structural and functional stability of ecosystems following disturbances. However, changes in resilience over the past few decades and the risk of future resilience loss under ongoing climate change are unclear. Here, we identified resilience trends using two remotely sensed vegetation indices, analyzed the relative importance of potential driving factors to resilience changes, and finally assessed the risk of future resilience loss based on the output data of eight models from CMIP6. The results revealed that more than 60% of the ecosystems experienced a conversion from an increased trend to a declined trend in resilience. Attribution analysis showed that the most important driving factors of declined resilience varied regionally. The declined trends in resilience were associated with increased precipitation variability in the tropics, decreased vegetation cover in arid region, increased temperature variability in temperate regions, and increased average temperature in cold regions. CMIP6 reveals that terrestrial ecosystems under SPP585 are expected to experience more intense declines in resilience than those under SSP126 and SSP245, particularly in cold regions. These results highlight the risk of continued degradation of ecosystem resilience in the future and the urgency of climate mitigation actions.
Assuntos
Mudança Climática , Ecossistema , Temperatura , Modelos TeóricosRESUMO
Reproductive aging not only affects the fertility and physical and mental health of women but also accelerates the aging process of other organs. There is an urgent need newfor novel mechanisms, targets, and drugs to break the vicious cycle of mitochondrial dysfunction, redox imbalance, and germ cell apoptosis associated with ovarian aging. Autophagy, recognized as a longevity mechanism, has recently become a focal point in anti-aging research. Although mitophagy is a type of autophagy, its role and regulatory mechanisms in ovarian aging, particularly in age-related ovarian function decline, remain unclear. Nerve growth factor inducible gene B (Nur77) is an early response gene that can be stimulated by oxidative stress, DNA damage, metabolism, and inflammation. Recent evidence recommends that decreased expression of Nur77 is associated with age-related myocardial fibrosis, renal dysfunction, and Parkinson's disease; however, its association with ovarian aging has not been studied yet. We herein identified Nur77 as a regulator of germ cell senescence, apoptosis, and mitophagy and found that overexpression of Nur77 can activate mitophagy, improve oxidative stress, reduce apoptosis, and ultimately enhance ovarian reserve in aged mice ovaries. Furthermore, we discovered an association between Nur77 and the AKT pathway through String and molecular docking analyses. Experimental confirmation revealed that the AKT/mTOR signaling pathway is involved in the regulation of Nur77 in ovarian function. In conclusion, our results suggest Nur77 as a promising target for preventing and treating ovarian function decline related to reproductive aging.
Assuntos
Envelhecimento , Apoptose , Mitofagia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Ovário , Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Feminino , Mitofagia/fisiologia , Camundongos , Apoptose/fisiologia , Apoptose/genética , Ovário/metabolismo , Envelhecimento/fisiologia , Envelhecimento/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Reserva Ovariana/fisiologia , Reprodução/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Inadequate endometrial receptivity often results in embryo implantation failure and miscarriage. Human chorionic gonadotropin (hCG) is a key signaling molecule secreted during early embryonic development, which regulates embryonic maternal interface signaling and promotes embryo implantation. This study aimed to examine the impact of hCG on endometrial receptivity and its underlying mechanisms. An exploratory study was designed, and endometrial samples were obtained from women diagnosed with simple tubal infertility or male factor infertile (n = 12) and recurrent implantation failure (RIF, n = 10). Using reverse transcription-quantitative PCR and western blotting, luteinizing hormone (LH)/hCG receptor (LHCGR) levels and autophagy were detected in the endometrial tissues. Subsequently, primary endometrial stromal cells (ESCs) were isolated from these control groups and treated with hCG to examine the presence of LHCGR and markers of endometrial receptivity (HOXA10, ITGB3, FOXO1, LIF, and L-selectin ligand) and autophagy-related factors (Beclin1, LC3, and P62). The findings revealed that the expressions of receptivity factors, LHCGR, and LC3 were reduced in the endometrial tissues of women with RIF compared with the control group, whereas the expression of P62 was elevated. The administration of hCG to ESCs specifically activated LHCGR, stimulating an increase in the endometrial production of HOXA10, ITGB3, FOXO1, LIF and L-selectin ligands. Furthermore, when ESCs were exposed to 0.1 IU/mL hCG for 72 h, the autophagy factors Beclin1 and LC3 increased within the cells and P62 decreased. Moreover, the apoptotic factor Bax increased and Bcl-2 declined. However, when small interfering RNA was used to knock down LHCGR, hCG was less capable of controlling endometrial receptivity and autophagy molecules in ESCs. In addition, hCG stimulation enhanced the phosphorylation of ERK1/2 and mTOR proteins. These results suggest that women with RIF exhibit lower levels of LHCGR and compromised autophagy function in their endometrial tissues. Thus, hCG/LHCGR could potentially improve endometrial receptivity by modulating autophagy and apoptosis.
Assuntos
Endométrio , Selectina L , Gravidez , Humanos , Masculino , Feminino , Proteína Beclina-1 , Selectina L/metabolismo , Endométrio/metabolismo , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/metabolismo , Implantação do Embrião/fisiologia , Autofagia , Células Estromais/metabolismo , ApoptoseRESUMO
BACKGROUND: The influence of SARS-CoV-2 infection after embryo transfer on early pregnancy outcomes in in vitro fertilization or intracytoplasmic sperm injection-embryo transfer treatment remains inadequately understood. This knowledge gap endures despite an abundance of studies investigating the repercussions of preceding SARS-CoV-2 infection on early pregnancy outcomes in spontaneous pregnancies. OBJECTIVE: This study aimed to investigate the association between SARS-CoV-2 infection within 10 weeks after embryo transfer and early pregnancy outcomes in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. STUDY DESIGN: This prospective cohort study was conducted at a single public in vitro fertilization center in China. Female patients aged 20 to 39 years, with a body mass index ranging from 18 to 30 kg/m2, undergoing in vitro fertilization/intracytoplasmic sperm injection treatment, were enrolled between September 2022 and December 2022, with follow-up extended until March 2023. The study tracked SARS-CoV-2 infection time (≤14 days, ≤28 days, and ≤10 weeks after embryo transfer), symptoms, vaccination status, the interval between vaccination and embryo transfer, and early pregnancy outcomes, encompassing biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate. The study used single-factor analysis and multivariate logistic regression to examine the association between SARS-CoV-2 infection status, along with other relevant factors, and the early pregnancy outcomes. RESULTS: A total of 857 female patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment were analyzed. In the first stage, SARS-CoV-2 infection within 14 days after embryo transfer did not have a significant negative association with the biochemical pregnancy rate (adjusted odds ratio, 0.74; 95% confidence interval, 0.51-1.09). In the second stage, SARS-CoV-2 infection within 28 days after embryo transfer had no significant association with the implantation rate (36.6% in infected vs 44.0% in uninfected group; P=.181). No statistically significant association was found with the clinical pregnancy rate after adjusting for confounding factors (adjusted odds ratio, 0.69; 95% confidence interval, 0.56-1.09). In the third stage, SARS-CoV-2 infection within 10 weeks after embryo transfer had no significant association with the early miscarriage rate (adjusted odds ratio, 0.77; 95% confidence interval, 0.35-1.71). CONCLUSION: Our study suggests that SARS-CoV-2 infection within 10 weeks after embryo transfer may not be negatively associated with the biochemical pregnancy rate, implantation rate, clinical pregnancy rate, and early miscarriage rate in patients undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. It is important to note that these findings are specific to the target population of in vitro fertilization/intracytoplasmic sperm injection patients aged 20 to 39 years, without previous SARS-CoV-2 infection, and with a body mass index of 18 to 30 kg/m2. This information offers valuable insights, addressing current concerns and providing a clearer understanding of the actual risk associated with SARS-CoV-2 infection after embryo transfer.
Assuntos
Aborto Espontâneo , COVID-19 , Gravidez , Humanos , Masculino , Feminino , Resultado da Gravidez , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/etiologia , Estudos Prospectivos , COVID-19/terapia , COVID-19/etiologia , SARS-CoV-2 , Sêmen , Fertilização in vitro/efeitos adversos , Transferência Embrionária , Taxa de Gravidez , Estudos RetrospectivosRESUMO
Mixed lineage kinase domain-like protein (MLKL) is the terminal effector of necroptosis, a form of regulated necrosis. Optimal activation of necroptosis, which eliminates infected cells, is critical for antiviral host defense. MicroRNAs (miRNAs) regulate the expression of genes involved in various biological and pathological processes. However, the roles of miRNAs in necroptosis-associated host defense remain largely unknown. We screened a library of miRNAs and identified miR-324-5p as the most effective suppressor of necroptosis. MiR-324-5p downregulates human MLKL expression by specifically targeting the 3'UTR in a seed region-independent manner. In response to interferons (IFNs), miR-324-5p is downregulated via the JAK/STAT signaling pathway, which removes the posttranscriptional suppression of MLKL mRNA and facilitates the activation of necroptosis. In influenza A virus (IAV)-infected human primary macrophages, IFNs are induced, leading to the downregulation of miR-324-5p. MiR-324-5p overexpression attenuates IAV-associated necroptosis and enhances viral replication, whereas deletion of miR-324-5p potentiates necroptosis and suppresses viral replication. Hence, miR-324-5p negatively regulates necroptosis by manipulating MLKL expression, and its downregulation by IFNs orchestrates optimal activation of necroptosis in host antiviral defense.
Assuntos
Vírus da Influenza A , MicroRNAs , Antivirais , Humanos , Interferons , MicroRNAs/genética , MicroRNAs/metabolismo , Necroptose , Replicação Viral/fisiologiaRESUMO
The development and utilization of new dienes and dienophiles for the controlled synthesis of isoquinuclidines is highly appealing. Herein, we describe a novel strategy for diastereoselective synthesis of indoline-fused isoquinuclidines via copper-catalyzed dearomative Diels-Alder reaction of cyclic amidines with indoles. This protocol avoids the use of unstable DHPs and activated alkenes, offering a more efficient and selective approach to synthesize isoquinuclidines.
RESUMO
Flurbiprofen axetil is commonly utilized in clinical practice as one of the nonsteroidal anti-inflammatory drugs (NSAIDs) and is included in multimodal analgesia regimens postbreast cancer surgery. Numerous NSAIDs have been studied for their potential to both promote and inhibit cancer. Given the variability in their effects on tumors, further investigation into the specific role of flurbiprofen axetil is warranted. Therefore, the primary objective of this study was to assess the impact of flurbiprofen axetil on basal-like breast cancer (BLBC) metastasis and elucidate the underlying molecular mechanisms involved. The BLBC metastasis mouse model was established by caudal vein injection of tumor cells. The lung metastasis of breast cancer in mice and the effect of flurbiprofen axetil were assessed by in vivo bioluminescence imaging, hematoxylin and eosin staining and immunohistochemistry. In vitro, the results of flurbiprofen axetil on the proliferation, migration, and invasion of MDA-MB-231 human breast cancer cells and BT-549 human breast cancer cells were assessed by colony formation assay and transwell assay. The effects of flurbiprofen axetil on several tumor metastasis-related signaling pathway proteins were examined by western blot, and the reversal extent of the flurbiprofen axetil effect by Ro 67-7476 (ERK phosphorylation agonist) was detected by transwell assay. The results showed that flurbiprofen axetil significantly inhibited BLBC lung metastasis in mice. Flurbiprofen axetil similarly inhibited breast cancer cell migration and invasion in vitro but did not affect their proliferation. Mechanistic investigations have revealed that flurbiprofen axetil exerts a noteworthy inhibitory influence on the MEK/ERK pathway while exhibiting no significant alteration in the expression of other pathway proteins intricately associated with epithelial-mesenchymal transition. In conclusion, the inhibitory effect of flurbiprofen axetil on BLBC metastasis is characterized by its selectivity in targeting the MEK/ERK signaling pathway rather than exerting a broad impact on the global signaling pathway.
RESUMO
BACKGROUND: Colonoscopic enteral tube placement using current methods has some shortcomings, such as the complexity of the procedure and tube dislodgement. The magnetic navigation technique (MNT) has been proven effective for nasoenteral feeding tube placement, and is associated with reduced cost and time to initiation of nutrition. This study attempted to develop a novel method for enteral tube placement using MNT. METHODS: The MNT device consisted of an external magnet and a 12 Fr tube with a magnet at the end. Ten swine were used, and bowel cleansing was routinely performed before colonoscopy. Intravenous anesthesia with propofol and ketamine was administered. A colonoscopic enteral tube was placed using the MNT. The position of the end of the enteral tube was determined by radiography, and angiography was performed to check for colonic perforations. Colonoscopy was used to detect intestinal mucosal damage after tube removal. RESULTS: MNT-assisted colonoscopic enteral tube placement was successfully completed in all pigs. The median operating time was 30 (26-47) min. No colon perforation was detected on colonography after enteral tube placement, and no colonic mucosal bleeding or injury was detected after the removal of the enteral tube. CONCLUSIONS: MNT-assisted colonoscopic enteral tube placement is feasible and safe in swine and may represent a valuable method for microbial therapy, colonic drainage, and host-microbiota interaction research in the future.
Assuntos
Colonoscopia , Intubação Gastrointestinal , Animais , Colonoscopia/métodos , Suínos , Intubação Gastrointestinal/métodos , Nutrição Enteral/métodos , Nutrição Enteral/instrumentação , Imãs , Colo/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Duração da CirurgiaRESUMO
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase crucial for cellular differentiation, proliferation, and autophagy. It shows a complex role in the endometrium, influencing both normal and pathogenic conditions. mTOR promotes the growth and maturation of endometrial cells, enhancing endometrial receptivity and decidualization. However, it also contributes to the development of endometriosis (EMs) and endometrial cancer (EC), thus emerging as a therapeutic target for these conditions. In this review, we summarize recent research progress on the mTOR signalling pathway in the endometrium. This provides insights into female endometrial structure and function and guides the prevention and treatment of related diseases.
Assuntos
Endometriose , Sirolimo , Animais , Feminino , Humanos , Sirolimo/uso terapêutico , Endométrio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Mamíferos/metabolismo , Endometriose/metabolismoRESUMO
The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.
Assuntos
Antibacterianos , Escherichia coli , Nanofibras , Polímeros , Polivinil , Staphylococcus aureus , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polivinil/química , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química , Membranas Artificiais , Testes de Sensibilidade Microbiana , Filtros de Ar , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Filtração/métodos , Tamanho da Partícula , Polímeros de FluorcarbonetoRESUMO
Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.
Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Moléculas de Adesão Celular , Progressão da Doença , Linhagem Celular TumoralRESUMO
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 µg/g body weight) in 100 µL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 µg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Embolia Pulmonar , Tromboplastina , Cordão Umbilical , Animais , Células-Tronco Mesenquimais/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Tromboplastina/metabolismo , Cordão Umbilical/citologia , Embolia Pulmonar/metabolismo , Camundongos , Coagulação Sanguínea/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Relação Dose-Resposta a DrogaRESUMO
We investigated the neurocognitive mechanisms underlying the processing of combinatorial unstated meaning. Sentences like "Charles jumped for 5 minutes." engender an iterative meaning that is not explicitly stated but enriched by comprehenders beyond simple composition. Comprehending unstated meaning involves meaning contextualization-integrative meaning search in sentential-discourse context. Meanwhile, people differ in how they process information with varying context sensitivity. We hypothesized that unstated meaning processing would vary with individual socio-cognitive propensity indexed by the Autism-Spectrum Quotient (AQ), accompanied by differential cortical engagements. Using functional magnetic resonance imaging, we examined the processing of sentences with unstated iterative meaning in typically-developed individuals and found an engagement of the fronto-parietal network, including the left pars triangularis (L.PT), right intraparietal (R.IPS), and parieto-occipital sulcus (R.POS). We suggest that the L.PT subserves a contextual meaning search, while the R.IPS/POS supports enriching unstated iteration in consideration of event durations and interval lengths. Moreover, the activation level of these regions negatively correlated with AQ. Higher AQ ties to lower L.PT activation, likely reflecting weaker context sensitivity, along with lower IPS activation, likely reflecting weaker computation of events' numerical-temporal specifications. These suggest that the L.PT and R.IPS/POS support the processing of combinatorial unstated meaning, with the activation level modulated by individual cognitive styles.
Assuntos
Encéfalo , Pensamento , Humanos , Encéfalo/fisiologia , Idioma , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cognição , Semântica , Mapeamento EncefálicoRESUMO
BACKGROUND AND AIMS: The weight-adjusted waist index (WWI) is a novel indicator of obesity, and its association with mortality in stroke patients remains unknown. We aimed to explore these associations through a national longitudinal cohort study. METHODS AND RESULTS: We included stroke survivors from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 who were followed up until December 31, 2019. The study outcomes were all-cause and cardiovascular disease (CVD) mortality in stroke patients. A total of 1427 stroke patients were enrolled, and after a median follow-up duration of 83 months, 624 stroke patients died, including 251 from CVD. KaplanâMeier survival analyses indicated that WWI was significantly associated with the probability of survival over time in stroke patients (log-rank tests, both p < 0.0001). After adjusting for confounders, WWI was significantly and positively associated with all-cause and CVD mortality after stroke. Restricted cubic spline analysis revealed that WWI was linearly associated with all-cause mortality and nonlinearly associated with CVD mortality. Stratified analyses suggested that sex significantly influenced the effect of WWI on all-cause mortality in stroke patients. Additional body mass index (BMI) adjustments did not significantly change the results. CONCLUSION: WWI was positively associated with all-cause and CVD mortality in stroke patients, independent of BMI. These effects were present only in men. These findings suggest that WWI is an independent prognostic factor in stroke patients and that maintaining appropriate WWI values can help improve the prognosis of stroke survivors.
RESUMO
OBJECTIVES: To examine the associations between tobacco industry denormalisation (TID) beliefs and support for tobacco endgame policies. METHODS: A total of 2810 randomly selected adult respondents of population-based tobacco policy-related surveys (2018-2019) were included. TID beliefs (agree vs disagree/unsure) were measured by seven items: tobacco manufacturers ignore health, induce addiction, hide harm, spread false information, lure smoking, interfere with tobacco control policies and should be responsible for health problems. Score of each item was summed up and dichotomised (median=5, >5 strong beliefs; ≤5 weak beliefs). Support for tobacco endgame policies on total bans of tobacco sales (yes/no) and use (yes/no) was reported. Associations between TID beliefs and tobacco endgame policies support across various smoking status were analysed, adjusting for sociodemographics. RESULTS: Fewer smokers (23.3%) had strong beliefs of TID than ex-smokers (48.4%) and never smokers (48.5%) (p<0.001). Support for total bans on tobacco sales (74.6%) and use (76.9%) was lower in smokers (33.3% and 35.3%) than ex-smokers (74.3% and 77.9%) and never smokers (76.0% and 78.3%) (all p values<0.001). An increase in the number of TID beliefs supported was positively associated with support for a total ban on sales (adjusted risk ratio 1.06, 95% CI 1.05 to 1.08, p<0.001) and use (1.06, 95% CI 1.05 to 1.07, p<0.001). The corresponding associations were stronger in smokers than non-smokers (sales: 1.87 vs 1.25, p value for interaction=0.03; use: 1.78 vs 1.21, p value for interaction=0.03). CONCLUSION: Stronger TID belief was associated with greater support for total bans on tobacco sales and use. TID intervention may increase support for tobacco endgame, especially in current smokers.
RESUMO
BACKGROUND: Drug addiction is a significant public health concern, and aggression is common among people with drug addiction. Despite mounting evidence showing that the Dark Triad is a risk factor for aggression, the mediating and moderating mechanisms underlying this relationship are less known. This study tested the mediation effect of self-control in the association between the Dark Triad and aggression and whether this mediation was moderated by physical exercise. METHODS: A cross-sectional study was conducted in two compulsory drug rehabilitation centers in Nanning, China. A convenience sample of 564 drug abstainers completed a questionnaire to assess their Dark Triad, self-control, aggression, and physical exercise levels. Mediation and moderation analyses were carried out in SPSS macro-PROCESS. RESULTS: Self-control partially mediated the positive association between the Dark Triad and aggression. Physical exercise moderated the indirect effect of the Dark Triad on aggression via self-control, with the effect decreasing with the increase in physical exercise levels. CONCLUSIONS: This study offers fresh insights into the underlying mediating and moderating mechanisms between the Dark Triad and aggression. The findings provide important practical implications for future intervention and prevention programs to address aggression among drug abstainers, which may be realized through strengthening self-control and physical exercise.
Assuntos
Agressão , Exercício Físico , Autocontrole , Transtornos Relacionados ao Uso de Substâncias , Humanos , Agressão/psicologia , Masculino , Exercício Físico/psicologia , Estudos Transversais , Autocontrole/psicologia , Feminino , Adulto , Transtornos Relacionados ao Uso de Substâncias/psicologia , China , Adulto Jovem , Pessoa de Meia-Idade , Maquiavelismo , Inquéritos e QuestionáriosRESUMO
Background: Obstructive nephropathy (ON), resulting from hindered urine flow, significantly contributes to both acute kidney injury (AKI) and chronic kidney disease (CKD). Research has consistently highlighted increased lymphatic vessels (LVs) density in diverse kidney diseases. However, the precise involvement of LVs in ON remains unclear. Methods: Patients diagnosed with ON were enrolled in this study from January 2020 to December 2023. LVs and histological pathology in renal biopsy tissues were detected through immunohistochemistry and Periodic Acid-Schiff staining. Patients were categorized into two cohorts based on their estimated glomerular filtration rate (eGFR) levels: one cohort included patients with eGFR < 90, while the other encompassed those with eGFR ≥ 90. Univariate and multivariable logistic regression analyses were conducted to determine the odds ratio (OR) and 95% confidence interval (CI) for the association between the two cohorts. Results: 239 patients were enrolled in the study. The density of LVs was elevated in ON, with even higher densities observed in patients with severe renal impairment. Additionally, several risk factors contributing to the deterioration of renal function in ON patients have been identified, including age, ureteral calculi (UC), alanine aminotransferase (ALT), and uric acid (UA). Furthermore, by leveraging LVs density, multiple robust models have been established to predict severe renal impairment in ON. Conclusions: Lymphatic vessels density is significantly elevated in ON, serving as an independent risk factor for the decline in renal function.
Assuntos
Taxa de Filtração Glomerular , Vasos Linfáticos , Humanos , Masculino , Feminino , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Idoso , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/complicações , Estudos RetrospectivosRESUMO
BACKGROUND: Maternal lipid metabolism has been implicated in elevating the risk of adverse pregnancy outcomes, which is a particularly significant concern in twin pregnancies. However, the precise relationship between early pregnancy dyslipidemia and the risk of preterm birth (PTB) in twin pregnancies remains unclear. METHODS: This retrospective cohort study included women with twin pregnancies between January 2018 and December 2023. Early pregnancy blood lipid profiles, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C), were examined. Dyslipidemia was diagnosed based on the diagnostic criteria outlined in the 2016 guidelines for the prevention and treatment of dyslipidemia in Chinese adults. PTB was defined as birth occurring before 37 weeks of pregnancy. Logistic regression models were used to evaluate the association of early pregnancy dyslipidemia with PTB in twin pregnancies. RESULTS: A total of 613 women with twin pregnancies were included, and 141 women were complicated with dyslipidemia. The incidence of PTB < 37 weeks was significantly higher in the dyslipidemia group compared to the group without dyslipidemia (64.5% vs. 50.4%, P = 0.003). After adjusting for confounding factors, dyslipidemia was positively associated with PTB < 37 weeks (adjusted odds ratio: 1.71; 95% confidence interval: 1.13-2.58). However, these associations varied depending on the chorionicity and mode of conception of the twins. The positive associations between early pregnancy dyslipidemia and PTB < 37 weeks remained significant only in spontaneously conceived (SC) or dichorionic diamniotic (DCDA) twin pregnancies. No statistically significant associations were observed between dyslipidemia and the other secondary outcomes. CONCLUSION: Early pregnancy dyslipidemia was positively associated with PTB < 37 weeks in twin pregnancies, and this association remained significant in SC or DCDA twin pregnancies. Comprehensive lipid profile assessment in the first trimester may be beneficial for patients' monitoring and implementing interventions to mitigate adverse pregnancy outcomes.