Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pathogens ; 10(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920477

RESUMO

Epigallocatechin-3-gallate (EGCG), the primary bioactive polyphenol in green tea, has been shown to inhibit the growth of human papilloma virus (HPV)-transformed keratinocytes. Here, we set out to examine the consequences of EGCG treatment on the growth of HPV18-immortalised foreskin keratinocytes (HFK-HPV18) and an authentic HPV18-positive vulvar intraepithelial neoplasia (VIN) clone, focusing on its ability to influence cell proliferation and differentiation and to impact on viral oncogene expression and virus replication. EGCG treatment was associated with degradation of the E6 and E7 oncoproteins and an upregulation of their associated tumour suppressor genes; consequently, keratinocyte proliferation was inhibited in both monolayer and organotypic raft culture. While EGCG exerted a profound effect on cell proliferation, it had little impact on keratinocyte differentiation. Expression of the late viral protein E4 was suppressed in the presence of EGCG, suggesting that EGCG was able to block productive viral replication in differentiating keratinocytes. Although EGCG did not alter the levels of E6 and E7 mRNA, it enhanced the turnover of the E6 and E7 proteins. The addition of MG132, a proteasome inhibitor, to EGCG-treated keratinocytes led to the accumulation of the E6/E7 proteins, showing that EGCG acts as an anti-viral, targeting the E6 and E7 proteins for proteasome-mediated degradation.

2.
Sci Rep ; 11(1): 17665, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480080

RESUMO

In a previous study, we showed that the Hedgehog (Hh) signalling pathway is aberrantly activated in vulval squamous cell carcinoma (VSCC). In this study, we further validated our findings on a prospective cohort of primary VSCC cases, where immunohistochemical staining confirmed that key Hh pathway components were overexpressed in VSCC compared to normal vulval epithelium. We also undertook a series of in vitro studies to determine the extent of Hh pathway activation in VSCC-derived cell lines, and examine the consequences of pathway inhibition on the growth of these cells. We found that of six cell lines tested, four displayed elevated baseline Hh pathway activity that was dependent on SHH ligand, or in one case, a PTCH1 gene mutation. Hh signalling appeared necessary to sustain cell growth, as SHH ligand depletion with Robotikinin or SMO inhibition, either with chemical inhibitors (Itraconazole or LDE-225) or SMO-specific siRNA, attenuated GLI1 activity and cell proliferation in both monolayer and organotypic raft culture. Furthermore, treatment of Hh-dependent cell lines with SMO inhibitors sensitised cells to Cisplatin. Findings from our study offer us the opportunity to explore further the development of targeted chemotherapy for women with VSCC driven by aberrant Hh activation.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Vulvares/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Queratinócitos/metabolismo , Neoplasias Vulvares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA