Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 129(6): 1482-1491, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194954

RESUMO

After just months of simulated training, on January 19, 2019 a 23-year-old E-sports pro-gamer, Enzo Bonito, took to the racetrack and beat Lucas di Grassi, a Formula E and ex-Formula 1 driver with decades of real-world racing experience. This event raised the possibility that practicing in virtual reality can be surprisingly effective for acquiring motor expertise in real-world tasks. Here, we evaluate the potential of virtual reality to serve as a space for training to expert levels in highly complex real-world tasks in time windows much shorter than those required in the real world and at much lower financial cost without the hazards of the real world. We also discuss how VR can also serve as an experimental platform for exploring the science of expertise more generally.


Assuntos
Destreza Motora , Realidade Virtual , Humanos
2.
J Neurophysiol ; 128(4): 994-1010, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001748

RESUMO

Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. Electromyography (EMG) was recorded from eight hand-forearm muscles in eight healthy individuals. Modularity was defined using non-negative matrix factorization to identify low-rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high-density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both data sets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest that corticospinal connectivity to individual intrinsic hand muscles may be combined with modular multimuscle activation via synergies in the formation of hand postures.NEW & NOTEWORTHY This is the first work to examine the similarity of modularity in hand muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex and that derived from voluntary hand movement. We show that TMS-elicited muscle synergies of the hand, measured at rest, reflect those found in voluntary behavior involving finger fractionation. This work provides a basis for future work using TMS to investigate muscle activation modularity in the human motor system.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Animais , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Humanos , Córtex Motor/fisiologia , Movimento , Músculo Esquelético/fisiologia
3.
Exp Brain Res ; 239(5): 1651-1665, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774688

RESUMO

Virtual reality (VR) has garnered much interest as a training environment for motor skill acquisition, including for neurological rehabilitation of upper extremities. While the focus has been on gross upper limb motion, VR applications that involve reaching for, and interacting with, virtual objects are growing. The absence of true haptics in VR when it comes to hand-object interactions raises a fundamentally important question: can haptic-free immersive virtual environments (hf-VEs) support naturalistic coordination of reach-to-grasp movements? This issue has been grossly understudied, and yet is of significant importance in the development and application of VR across a number of sectors. In a previous study (Furmanek et al., J Neuroeng Rehabil 16:78, 2019), we reported that reach-to-grasp movements are similarly coordinated in both the physical environment (PE) and hf-VE. The most noteworthy difference was that the closure phase-which begins at maximum aperture and lasts through the end of the movement-was longer in hf-VE than in PE, suggesting that different control laws might govern the initiation of closure between the two environments. To do so, we reanalyzed data from Furmanek et al. (J Neuroeng Rehabil 16:78, 2019), in which the participants reached to grasp three differently sized physical objects, and matching 3D virtual object renderings, placed at three different locations. Our analysis revealed two key findings pertaining to the initiation of closure in PE and hf-VE. First, the respective control laws governing the initiation of aperture closure in PE and hf-VE both included state estimates of transport velocity and acceleration, supporting a general unified control policy for implementing reach-to-grasp across physical and virtual environments. Second, the aperture was less informative to the control law in hf-VE. We suggest that the latter was likely because transport velocity at closure onset and aperture at closure onset were less independent in hf-VE than in PE, ultimately resulting in an aperture at closure onset having a weaker influence on the initiation of closure. In this way, the excess time and muscular effort needed to actively bring the fingers to a stop at the interface of a virtual object was factored into the control law governing the initiation of closure in hf-VE. Critically, this control law remained applicable, albeit with different weights in hf-VE, despite the absence of terminal haptic feedback and potential perceptual differences.


Assuntos
Realidade Virtual , Fenômenos Biomecânicos , Força da Mão , Humanos , Movimento , Desempenho Psicomotor
4.
Neuroimage ; 202: 116124, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473351

RESUMO

Transcranial alternating current stimulation (tACS) is a noninvasive method used to modulate activity of superficial brain regions. Deeper and more steerable stimulation could potentially be achieved using transcranial temporal interference stimulation (tTIS): two high-frequency alternating fields interact to produce a wave with an envelope frequency in the range thought to modulate neural activity. Promising initial results have been reported for experiments with mice. In this study we aim to better understand the electric fields produced with tTIS and examine its prospects in humans through simulations with murine and human head models. A murine head finite element model was used to simulate previously published experiments of tTIS in mice. With a total current of 0.776 mA, tTIS electric field strengths up to 383 V/m were reached in the modeled mouse brain, affirming experimental results indicating that suprathreshold stimulation is possible in mice. Using a detailed anisotropic human head model, tTIS was simulated with systematically varied electrode configurations and input currents to investigate how these parameters influence the electric fields. An exhaustive search with 88 electrode locations covering the entire head (146M current patterns) was employed to optimize tTIS for target field strength and focality. In all analyses, we investigated maximal effects and effects along the predominant orientation of local neurons. Our results showed that it was possible to steer the peak tTIS field by manipulating the relative strength of the two input fields. Deep brain areas received field strengths similar to conventional tACS, but with less stimulation in superficial areas. Maximum field strengths in the human model were much lower than in the murine model, too low to expect direct stimulation effects. While field strengths from tACS were slightly higher, our results suggest that tTIS is capable of producing more focal fields and allows for better steerability. Finally, we present optimal four-electrode current patterns to maximize tTIS in regions of the pallidum (0.37 V/m), hippocampus (0.24 V/m) and motor cortex (0.57 V/m).


Assuntos
Encéfalo , Simulação por Computador , Modelos Biológicos , Estimulação Transcraniana por Corrente Contínua , Adulto , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Transcraniana por Corrente Contínua/instrumentação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Transcraniana por Corrente Contínua/normas
5.
J Neuroeng Rehabil ; 16(1): 92, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315612

RESUMO

BACKGROUND: There is conflict regarding the benefits of greater amounts of intensive upper limb rehabilitation in the early period post-stroke. This study was conducted to test the feasibility of providing intensive therapy during the early period post-stroke and to develop a randomized control trial that is currently in process. Specifically, the study investigated whether an additional 8 h of specialized, intensive (200-300 separate hand or arm movements per hour) virtual reality (VR)/robotic based upper limb training introduced within 1-month post-stroke resulted in greater improvement in impairment and behavior, and distinct changes in cortical reorganization measured via Transcranial Magnetic Stimulation (TMS), compared to that of a control group. METHODS: Seven subjects received 8-1 h sessions of upper limb VR/robotic training in addition to their inpatient therapy (PT, OT, ST). Six subjects only received their inpatient therapy. All were tested on measures of impairment [Upper Extremity Fugl-Meyer Assessment (UEFMA), Wrist AROM, Maximum Pinch Force], behavior [Wolf Motor Function Test (WMFT)], and also received TMS mapping until 6 months post training. ANOVAs were conducted to measure differences between groups across time for all outcome measures. Associations between changes in ipsilesional cortical maps during the early period of enhanced neuroplasticity and long-term changes in upper limb impairment and behavior measures were evaluated. RESULTS: The VR/robotic group made significantly greater improvements on UEFMA and Wrist AROM scores compared to the usual care group. There was also less variability in the association between changes in the First Dorsal Interosseus (FDI) muscle map area and WMFT and Maximum Force change scores for the VR/robotic group. CONCLUSIONS: An additional 8 h of intensive VR/robotic based upper limb training initiated within the first month post-stroke may promote greater gains in impairment compared to usual care alone. Importantly, the data presented demonstrated the feasibility of conducting this intervention and multiple outcome measures (impairment, behavioral, neurophysiological) in the early period post-stroke.


Assuntos
Exoesqueleto Energizado , Córtex Somatossensorial/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Realidade Virtual , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/instrumentação , Resultado do Tratamento , Extremidade Superior/fisiopatologia
6.
J Neuroeng Rehabil ; 16(1): 78, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248426

RESUMO

BACKGROUND: Virtual reality (VR) offers unprecedented opportunity as a scientific tool to study visuomotor interactions, training, and rehabilitation applications. However, it remains unclear if haptic-free hand-object interactions in a virtual environment (VE) may differ from those performed in the physical environment (PE). We therefore sought to establish if the coordination structure between the transport and grasp components remain similar whether a reach-to-grasp movement is performed in PE and VE. METHOD: Reach-to-grasp kinematics were examined in 13 healthy right-handed young adults. Subjects were instructed to reach-to-grasp-to-lift three differently sized rectangular objects located at three different distances from the starting position. Object size and location were matched between the two environments. Contact with the virtual objects was based on a custom collision detection algorithm. Differences between the environments were evaluated by comparing movement kinematics of the transport and grasp components. RESULTS: Correlation coefficients, and the slope of the regression lines, between the reach and grasp components were similar for the two environments. Likewise, the kinematic profiles of the transport velocity and grasp aperture were strongly correlated across the two environments. A rmANOVA further identified some similarities and differences in the movement kinematics between the two environments - most prominently that the closure phase of reach-to-grasp movement was prolonged when movements were performed in VE. CONCLUSIONS: Reach-to-grasp movement patterns performed in a VE showed both similarities and specific differences compared to those performed in PE. Additionally, we demonstrate a novel approach for parsing the reach-to-grasp movement into three phases- initiation, shaping, closure- based on established kinematic variables, and demonstrate that the differences in performance between the environments are attributed to the closure phase. We discuss this in the context of how collision detection parameters may modify hand-object interactions in VE. Our study shows that haptic-free VE may be a useful platform to study reach-to-grasp movements, with potential implications for haptic-free VR in neurorehabilitation.


Assuntos
Desempenho Psicomotor/fisiologia , Realidade Virtual , Fenômenos Biomecânicos/fisiologia , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Adulto Jovem
7.
J Neurosci ; 35(5): 2112-7, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653367

RESUMO

Replanning ongoing movements following perturbations requires the accurate and immediate estimation of the motor response based on sensory input. Previous studies have used transcranial magnetic stimulation (TMS) in humans to demonstrate the participation of the anterior intraparietal sulcus (aIPS) and ventral premotor cortex (PMv) in visually mediated state estimation for grasping. Here, we test the role of parietofrontal circuits in processing the corrective responses to haptic perturbations of the finger during prehension. Subjects reached to grasp an object while having to compensate for a novel and unpredictable haptic perturbation of finger extension. TMS-based transient disruptions to the PMv and aIPS were delivered 0, 50, or 100 ms after the perturbation. TMS to the PMv delivered 50 ms after the perturbation (but not 0 or 100 ms, or in unperturbed trials) led to an overestimation of grasp aperture. No effects on grasp aperture were noted for the aIPS. Our results indicate that the PMv (but not aIPS) is involved in the deployment of the compensatory response in the presence of haptic perturbations during prehension. Our data also identify the time window of neural processing in the PMv when reprogramming occurs to be 50-100 ms following the perturbation onset.


Assuntos
Força da Mão , Córtex Motor/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor , Adulto , Fenômenos Biomecânicos , Retroalimentação Fisiológica , Feminino , Dedos/inervação , Dedos/fisiologia , Humanos , Masculino , Tato , Estimulação Magnética Transcraniana
8.
Artigo em Inglês | MEDLINE | ID: mdl-38498738

RESUMO

Transcranial magnetic stimulation (TMS) is often applied to the motor cortex to stimulate a collection of motor evoked potentials (MEPs) in groups of peripheral muscles. The causal interface between TMS and MEP is the selective activation of neurons in the motor cortex; moving around the TMS 'spot' over the motor cortex causes different MEP responses. A question of interest is whether a collection of MEP responses can be used to identify the stimulated locations on the cortex, which could potentially be used to then place the TMS coil to produce chosen sets of MEPs. In this work we leverage our previous report on a 3D convolutional neural network (CNN) architecture that predicted MEPs from the induced electric field, to tackle an inverse imaging task in which we start with the MEPs and estimate the stimulated regions on the motor cortex. We present and evaluate five different inverse imaging CNN architectures, both conventional and generative, in terms of several measures of reconstruction accuracy. We found that one architecture, which we propose as M2M-InvNet, consistently achieved the best performance.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Eletromiografia/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38427549

RESUMO

We designed and tested a system for real-time control of a user interface by extracting surface electromyographic (sEMG) activity from eight electrodes in a wristband configuration. sEMG data were streamed into a machine-learning algorithm that classified hand gestures in real-time. After an initial model calibration, participants were presented with one of three types of feedback during a human-learning stage: veridical feedback, in which predicted probabilities from the gesture classification algorithm were displayed without alteration; modified feedback, in which we applied a hidden augmentation of error to these probabilities; and no feedback. User performance was then evaluated in a series of minigames, in which subjects were required to use eight gestures to manipulate their game avatar to complete a task. Experimental results indicated that relative to the baseline, the modified feedback condition led to significantly improved accuracy. Class separation also improved, though this trend was not significant. These findings suggest that real-time feedback in a gamified user interface with manipulation of feedback may enable intuitive, rapid, and accurate task acquisition for sEMG-based gesture recognition applications.


Assuntos
Algoritmos , Gestos , Humanos , Eletromiografia/métodos , Retroalimentação , Avatar
10.
Front Robot AI ; 11: 1312554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476118

RESUMO

Objective: For transradial amputees, robotic prosthetic hands promise to regain the capability to perform daily living activities. Current control methods based on physiological signals such as electromyography (EMG) are prone to yielding poor inference outcomes due to motion artifacts, muscle fatigue, and many more. Vision sensors are a major source of information about the environment state and can play a vital role in inferring feasible and intended gestures. However, visual evidence is also susceptible to its own artifacts, most often due to object occlusion, lighting changes, etc. Multimodal evidence fusion using physiological and vision sensor measurements is a natural approach due to the complementary strengths of these modalities. Methods: In this paper, we present a Bayesian evidence fusion framework for grasp intent inference using eye-view video, eye-gaze, and EMG from the forearm processed by neural network models. We analyze individual and fused performance as a function of time as the hand approaches the object to grasp it. For this purpose, we have also developed novel data processing and augmentation techniques to train neural network components. Results: Our results indicate that, on average, fusion improves the instantaneous upcoming grasp type classification accuracy while in the reaching phase by 13.66% and 14.8%, relative to EMG (81.64% non-fused) and visual evidence (80.5% non-fused) individually, resulting in an overall fusion accuracy of 95.3%. Conclusion: Our experimental data analyses demonstrate that EMG and visual evidence show complementary strengths, and as a consequence, fusion of multimodal evidence can outperform each individual evidence modality at any given time.

11.
Front Hum Neurosci ; 17: 1179418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250692

RESUMO

Robotic technologies for rehabilitating motor impairments from neurological injuries have been the focus of intensive research and capital investment for more than 30 years. However, these devices have failed to convincingly demonstrate greater restoration of patient function compared to conventional therapy. Nevertheless, robots have value in reducing the manual effort required for physical therapists to provide high-intensity, high-dose interventions. In most robotic systems, therapists remain outside the control loop to act as high-level supervisors, selecting and initiating robot control algorithms to achieve a therapeutic goal. The low-level physical interactions between the robot and the patient are handled by adaptive algorithms that can provide progressive therapy. In this perspective, we examine the physical therapist's role in the control of rehabilitation robotics and whether embedding therapists in lower-level robot control loops could enhance rehabilitation outcomes. We discuss how the features of many automated robotic systems, which can provide repeatable patterns of physical interaction, may work against the goal of driving neuroplastic changes that promote retention and generalization of sensorimotor learning in patients. We highlight the benefits and limitations of letting therapists physically interact with patients through online control of robotic rehabilitation systems, and explore the concept of trust in human-robot interaction as it applies to patient-robot-therapist relationships. We conclude by highlighting several open questions to guide the future of therapist-in-the-loop rehabilitation robotics, including how much control to give therapists and possible approaches for having the robotic system learn from therapist-patient interactions.

12.
Commun Biol ; 6(1): 401, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046050

RESUMO

Gradient mapping is an important technique to summarize high dimensional biological features as low dimensional manifold representations in exploring brain structure-function relationships at various levels of the cerebral cortex. While recent studies have characterized the major gradients of functional connectivity in several brain structures using this technique, very few have systematically examined the correspondence of such gradients across structures under a common systems-level framework. Using resting-state functional magnetic resonance imaging, here we show that the organizing principles of the isocortex, and those of the cerebellum and hippocampus in relation to the isocortex, can be described using two common functional gradients. We suggest that the similarity in functional connectivity gradients across these structures can be meaningfully interpreted within a common computational framework based on the principles of predictive processing. The present results, and the specific hypotheses that they suggest, represent an important step toward an integrative account of brain function.


Assuntos
Neocórtex , Humanos , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem , Hipocampo , Mapeamento Encefálico/métodos
13.
Sci Data ; 9(1): 23, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064126

RESUMO

Control of reach-to-grasp movements for deft and robust interactions with objects requires rapid sensorimotor updating that enables online adjustments to changing external goals (e.g., perturbations or instability of objects we interact with). Rarely do we appreciate the remarkable coordination in reach-to-grasp, until control becomes impaired by neurological injuries such as stroke, neurodegenerative diseases, or even aging. Modeling online control of human reach-to-grasp movements is a challenging problem but fundamental to several domains, including behavioral and computational neuroscience, neurorehabilitation, neural prostheses, and robotics. Currently, there are no publicly available datasets that include online adjustment of reach-to-grasp movements to object perturbations. This work aims to advance modeling efforts of reach-to-grasp movements by making publicly available a large kinematic and EMG dataset of online adjustment of reach-to-grasp movements to instantaneous perturbations of object size and distance performed in immersive haptic-free virtual environment (hf-VE). The presented dataset is composed of a large number of perturbation types (10 for both object size and distance) applied at three different latencies after the start of the movement.


Assuntos
Força da Mão , Desempenho Psicomotor , Fenômenos Biomecânicos , Eletromiografia , Humanos , Movimento
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5107-5110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086392

RESUMO

This study examines longitudinal data of subjects initially examined in the early subacute period of recovery following a stroke with a test of reach to grasp (RTG) kinematics in an attempt to identify changes in movement patterns during the period of heightened neural recovery following a stroke. Subjects (n=8) were a convenience sample of persons with stroke that participated in an intervention trial. Baseline Upper Extremity Fugl Meyer Assessment (UEFMA) scores ranged between 31 and 52 and ages were between 49 and 83. The UEFMA and RTG test were collected prior to intervention, immediately after the intervention (approximately 18 days later post baseline) and one month after the intervention. RTG data for the uninvolved UE was collected at the one-month session. Subjects reached for objects placed on a table 10 cm from their sternums, picking them up and placing them on a target 30 cm from their acromioclavicular joints. Data was collected using an optical motion capture system. Active makers were placed on each fingertip, metacarpophalangeal, and proximal interphalangeal joint. Four additional passive markers were placed on the dorsum of the hand, the elbow, the shoulder, and the sternum. Subjects demonstrated statistically significant improvements in reaching duration, reaching trajectory smoothness, time after peak velocity and peak grip aperture. All of these measures correlated significantly with improvements in UEFMA. Clinical Relevance- Kinematic measures of reaching and grasping collected early in the subacute period of recovery from stroke may offer insight into specific aspects of the recovery of upper extremity motor function that differ from the information gleaned from clinical scales.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Força da Mão , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 359-364, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891309

RESUMO

The electromyography (EMG) signals have been widely utilized in human-robot interaction for extracting user hand/arm motion instructions. A major challenge of the online interaction with robots is the reliable EMG recognition from real-time data. However, previous studies mainly focused on using steady-state EMG signals with a small number of grasp patterns to implement classification algorithms, which is insufficient to generate robust control regarding the dynamic muscular activity variation in practice. Introducing more EMG variability during training and validation could implement a better dynamic-motion detection, but only limited research focused on such grasp-movement identification, and all of those assessments on the non-static EMG classification require supervised ground-truth label of the movement status. In this study, we propose a framework for classifying EMG signals generated from continuous grasp movements with variations on dynamic arm/hand postures, using an unsupervised motion status segmentation method. We collected data from large gesture vocabularies with multiple dynamic motion phases to encode the transitions from one intent to another based on common sequences of the grasp movements. Two classifiers were constructed for identifying the motion-phase label and grasptype label, where the dynamic motion phases were segmented and labeled in an unsupervised manner. The proposed framework was evaluated in real-time with the accuracy variation over time presented, which was shown to be efficient due to the high degree of freedom of the EMG data.


Assuntos
Gestos , Força da Mão , Eletromiografia , Humanos , Movimento (Física) , Movimento
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1566-1569, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891583

RESUMO

This study was performed to investigate the validity of a real world version of the Trail Making Test (TMT) across age strata, compared to the current standard TMT which is delivered using a pen-paper protocol. We developed a real world version of the TMT, the Can-TMT, that involves the retrieval of food cans, with numeric or alphanumerical labels, from a shelf in ascending order. Eye tracking data was acquired during the Can-TMT to calculate task completion time and compared to that of the Paper-TMT. Results indicated a strong significant correlation between the real world and paper tasks for both TMTA and TMTB versions of the tasks, indicative of the validity of the real world task. Moreover, the two age groups exhibited significant differences on the TMTA and TMTB versions of both task modalities (paper and can), further supporting the validity of the real world task. This work will have a significant impact on our ability to infer skill or impairment with visual search, spatial reasoning, working memory, and motor proficiency during complex real-world tasks. Thus, we hope to fill a critical need for an exam with the resolution capable of determining deficits which subjective or reductionist assessments may otherwise miss.


Assuntos
Memória de Curto Prazo , Testes Neuropsicológicos , Humanos , Teste de Sequência Alfanumérica
17.
Artigo em Inglês | MEDLINE | ID: mdl-34406942

RESUMO

Transcranial Magnetic Stimulation (TMS) can be used to map cortical motor topography by spatially sampling the sensorimotor cortex while recording Motor Evoked Potentials (MEP) with surface electromyography (EMG). Traditional sampling strategies are time-consuming and inefficient, as they ignore the fact that responsive sites are typically sparse and highly spatially correlated. An alternative approach, commonly employed when TMS mapping is used for presurgical planning, is to leverage the expertise of the coil operator to use MEPs elicited by previous stimuli as feedback to decide which loci to stimulate next. In this paper, we propose to automatically infer optimal future stimulus loci using active learning Gaussian Process-based sampling in place of user expertise. We first compare the user-guided (USRG) method to the traditional grid selection method and randomized sampling to verify that the USRG approach has superior performance. We then compare several novel active Gaussian Process (GP) strategies with the USRG approach. Experimental results using real data show that, as expected, the USRG method is superior to the grid and random approach in both time efficiency and MEP map accuracy. We also found that an active warped GP entropy and a GP random-based strategy performed equally as well as, or even better than, the USRG method. These methods were completely automatic, and succeeded in efficiently sampling the regions in which the MEP response variations are largely confined. This work provides the foundation for highly efficient, fully automatized TMS mapping, especially when considered in the context of advances in robotic coil operation.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Eletromiografia , Potencial Evocado Motor , Humanos , Músculo Esquelético
18.
Front Neurol ; 12: 623261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584529

RESUMO

The anatomical and physiological heterogeneity of strokes and persons with stroke, along with the complexity of normal upper extremity movement make the possibility that any single treatment approach will become the definitive solution for all persons with upper extremity hemiparesis due to stroke unlikely. This situation and the non-inferiority level outcomes identified by many studies of virtual rehabilitation are considered by some to indicate that it is time to consider other treatment modalities. Our group, among others, has endeavored to build on the initial positive outcomes in studies of virtual rehabilitation by identifying patient populations, treatment settings and training schedules that will best leverage virtual rehabilitation's strengths. We feel that data generated by our lab and others suggest that (1) persons with stroke may adapt to virtual rehabilitation of hand function differently based on their level of impairment and stage of recovery and (2) that less expensive, more accessible home based equipment seems to be an effective alternative to clinic based treatment that justifies continued optimism and study.

19.
J Hum Kinet ; 76: 89-100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33603927

RESUMO

Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32832934

RESUMO

One important application of transcranial magnetic stimulation (TMS) is to map cortical motor topography by spatially sampling the motor cortex, and recording motor evoked potentials (MEP) with surface electromyography. Standard approaches to TMS mapping involve repetitive stimulations at different loci spaced on a (typically 1 cm) grid on the scalp. These mappings strategies are time consuming and responsive sites are typically sparse. Furthermore, the long time scale prevents measurement of transient cortical changes, and is poorly tolerated in clinical populations. An alternative approach involves using the TMS mapper expertise to exploit the map's sparsity through the use of feedback of MEPs to decide which loci to stimulate. In this investigation, we propose a novel active learning method to automatically infer optimal future stimulus loci in place of user expertise. Specifically, we propose an active Gaussian Process (GP) strategy with loci selection criteria such as entropy and mutual information (MI). The proposed method twists the usual entropy- and MI-based selection criteria by modeling the estimated MEP field, i.e., the GP mean, as a Gaussian random variable itself. By doing so, we include MEP amplitudes in the loci selection criteria which would be otherwise completely independent of the MEP values. Experimental results using real data shows that the proposed strategy can greatly outperform competing methods when the MEP variations are mostly conned in a sub-region of the space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA