Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Inorg Chem ; 63(6): 2909-2918, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301278

RESUMO

We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.

2.
Inorg Chem ; 63(10): 4461-4473, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38421802

RESUMO

Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.

3.
J Phys Chem A ; 127(48): 10210-10222, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38000043

RESUMO

Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.

4.
Inorg Chem ; 61(40): 15853-15863, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36167335

RESUMO

Second coordination sphere interactions of cyanido complexes with hydrogen-bonding solvents and Lewis acids are known to influence their electronic structures, whereby the non-labile attachment of B(C6F5)3 resulted in several particularly interesting new compounds lately. Here, we investigate the effects of borylation on the properties of two FeII cyanido complexes in a systematic manner by comparing five different compounds and using a range of experimental techniques. Electrochemical measurements indicate that borylation entails a stabilization of the FeII-based t2g-like orbitals by up to 1.65 eV, and this finding was confirmed by Mössbauer spectroscopy. This change in the electronic structure has a profound impact on the UV-vis absorption properties of the borylated complexes compared to the non-borylated ones, shifting their metal-to-ligand charge transfer (MLCT) absorption bands over a wide range. Ultrafast UV-vis transient absorption spectroscopy provides insight into how borylation affects the excited-state dynamics. The lowest metal-centered (MC) excited states become shorter-lived in the borylated complexes compared to their cyanido analogues by a factor of ∼10, possibly due to changes in outer-sphere reorganization energies associated with their decay to the electronic ground state as a result of B(C6F5)3 attachment at the cyanido N lone pair.


Assuntos
Compostos Ferrosos , Ácidos de Lewis , Eletrônica , Compostos Ferrosos/química , Hidrogênio , Ligantes , Solventes
5.
Inorg Chem ; 61(44): 17515-17526, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36279568

RESUMO

Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.

6.
J Am Chem Soc ; 143(3): 1307-1312, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33449685

RESUMO

The photofunctionality of the cobalt-hexacarbene complex [Co(III)(PhB(MeIm)3)2]+ (PhB(MeIm)3 = tris(3-methylimidazolin-2-ylidene)(phenyl)borate) has been investigated by time-resolved optical spectroscopy. The complex displays a weak (Φ âˆ¼ 10-4) but remarkably long-lived (τ ∼ 1 µs) orange photoluminescence at 690 nm in solution at room temperature following excitation with wavelengths shorter than 350 nm. The strongly red-shifted emission is assigned from the spectroscopic evidence and quantum chemical calculations as a rare case of luminescence from a metal-centered state in a 3d6 complex. Singlet oxygen quenching supports the assignment of the emitting state as a triplet metal-centered state and underlines its capability of driving excitation energy transfer processes.

7.
Nanotechnology ; 32(42)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34229309

RESUMO

GaxIn(1-x)P nanowires with suitable bandgap (1.35-2.26 eV) ranging from the visible to near-infrared wavelength have great potential in optoelectronic applications. Due to the large surface-to-volume ratio of nanowires, the surface states become a pronounced factor affecting device performance. In this work, we performed a systematic study of GaxIn(1-x)P nanowires' surface passivation, utilizing AlyIn(1-y)P shells grownin situby using a metal-organic vapor phase epitaxy system. Time-resolved photoinduced luminescence and time-resolved THz spectroscopy measurements were performed to study the nanowires' carrier recombination processes. Compared to the bare Ga0.41In0.59P nanowires without shells, the hole and electron lifetime of the nanowires with the Al0.36In0.64P shells are found to be larger by 40 and 1.1 times, respectively, demonstrating effective surface passivation of trap states. When shells with higher Al composition were grown, both lifetimes of free holes and electrons decreased prominently. We attribute the acceleration of PL decay to an increase in the trap states' density due to the formation of defects, including the polycrystalline and oxidized amorphous areas in these samples. Furthermore, in a separate set of samples, we varied the shell thickness. We observed that a certain shell thickness of approximately ∼20 nm is needed for efficient passivation of Ga0.31In0.69P nanowires. The photoconductivity of the sample with a shell thickness of 23 nm decays 10 times slower compared with that of the bare core nanowires. We concluded that both the hole and electron trapping and the overall charge recombination in GaxIn(1-x)P nanowires can be substantially passivated through growing an AlyIn(1-y)P shell with appropriate Al composition and thickness. Therefore, we have developed an effectivein situsurface passivation of GaxIn(1-x)P nanowires by use of AlyIn(1-y)P shells, paving the way to high-performance GaxIn(1-x)P nanowires optoelectronic devices.

8.
J Am Chem Soc ; 142(19): 8565-8569, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32307993

RESUMO

Photoinduced bimolecular charge transfer processes involving the iron(III) N-heterocyclic carbene (FeNHC) photosensitizer [Fe(phtmeimb)2]+ (phtmeimb = phenyltris(3-methyl-imidazolin-2-ylidene)borate) and triethylamine as well as N,N-dimethylaniline donors have been studied using optical spectroscopy. The full photocycle of charge separation and recombination down to ultrashort time scales was studied by investigating the excited-state dynamics up to high quencher concentrations. The unconventional doublet ligand-to-metal charge transfer (2LMCT) photoactive excited state exhibits donor-dependent charge separation rates of up to 1.25 ps-1 that exceed the rates found for typical ruthenium-based systems and are instead more similar to results reported for organic sensitizers. The ultrafast charge transfer probed at high electron donor concentrations outpaces the solvent dynamics and goes beyond the classical Marcus electron transfer regime. Poor photoproduct yields are explained by donor-independent, fast charge recombination with rates of ∼0.2 ps-1, thus inhibiting cage escape and photoproduct formation. This study thus shows that the ultimate bottlenecks for bimolecular photoredox processes involving these FeNHC photosensitizers can only be determined from the ultrafast dynamics of the full photocycle, which is of particular importance when the bimolecular charge transfer processes are not limited by the intrinsic excited-state lifetime of the photosensitizer.


Assuntos
Boratos/química , Elétrons , Etilaminas/química , Compostos Férricos/química , Luz , Fármacos Fotossensibilizantes/química , Estrutura Molecular , Processos Fotoquímicos , Solventes/química
9.
Nano Lett ; 19(3): 1632-1642, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779588

RESUMO

Low-dimensional narrow-band-gap III-V semiconductors are key building blocks for the next generation of high-performance nanoelectronics, nanophotonics, and quantum devices. Realizing these various applications requires an efficient methodology that enables the material dimensional control during the synthesis process and the mass production of these materials with perfect crystallinity, reproducibility, low cost, and outstanding electronic and optoelectronic properties. Although advances in one- and two-dimensional narrow-band-gap III-V semiconductors synthesis, the progress toward reliable methods that can satisfy all of these requirements has been limited. Here, we demonstrate an approach that provides a precise control of the dimension of InAs from one-dimensional nanowires to wafer-scale free-standing two-dimensional nanosheets, which have a high degree of crystallinity and outstanding electrical and optical properties, using molecular-beam epitaxy by controlling catalyst alloy segregation. In our approach, two-dimensional InAs nanosheets can be obtained directly from one-dimensional InAs nanowires by silver-indium alloy segregation, which is much easier than the previously reported methods, such as the traditional buffering technique and select-area epitaxial growth. Detailed transmission electron microscopy investigations provide solid evidence that the catalyst alloy segregation is the origination of the InAs dimensional transformation from one-dimensional nanowires to two-dimensional nanosheets and even to three-dimensional complex crosses. Using this method, we find that the wafer-scale free-standing InAs nanosheets can be grown on various substrates including Si, MgO, sapphire, GaAs, etc. The InAs nanosheets grown at high temperature are pure-phase single crystals and have a high electron mobility and a long time-resolved terahertz kinetics lifetime. Our work will open up a conceptually new and general technology route toward the effective controlling of the dimension of the low-dimensional III-V semiconductors. It may also enable the low-cost fabrication of free-standing nanosheet-based devices on an industrial scale.

10.
J Am Chem Soc ; 141(19): 7743-7750, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017418

RESUMO

Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the molecular electrostatic potential (ESP) between PTO2 and IT-4F is large, and the induced intermolecular electric field may assist the charge generation. The results suggest OPVs have the potential for further improvement by judicious modulation of ESP.


Assuntos
Fontes de Energia Elétrica , Compostos Orgânicos/química , Energia Solar , Eletricidade Estática , Transporte de Elétrons , Fulerenos/química , Modelos Moleculares , Conformação Molecular , Polímeros/química
11.
Faraday Discuss ; 216(0): 191-210, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31016293

RESUMO

Ultrafast dynamics of photoinduced charge transfer processes in light-harvesting systems based on Earth-abundant transition metal complexes are of current interest for the development of molecular devices for solar energy conversion applications. A combination of ultrafast spectroscopy and first principles quantum chemical calculations of a recently synthesized iron carbene complex is used to elucidate the ultrafast excited state evolution processes in these systems with particular emphasis on investigating the underlying reasons why these complexes show promise in terms of significantly extended lifetimes of charge transfer excited states. Together, our results challenge the traditional excited state landscape for iron-based light harvesting transition metal complexes through radically different ground and excited state properties in alternative oxidation states. This includes intriguing indications of rich band-selective excited state dynamics on ultrafast timescales that are interpreted in terms of excitation energy dependence for excitations into a manifold of charge-transfer states. Some implications of the observed excited state properties and photoinduced dynamics for the utilization of iron carbene complexes for solar energy conversion applications are finally discussed.

13.
Nano Lett ; 17(7): 4248-4254, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28654299

RESUMO

Understanding of recombination and photoconductivity dynamics of photogenerated charge carriers in GaxIn1-xP NWs is essential for their optoelectronic applications. In this letter, we have studied a series of GaxIn1-xP NWs with varied Ga composition. Time-resolved photoinduced luminescence, femtosecond transient absorption, and time-resolved THz transmission measurements were performed to assess radiative and nonradiative recombination and photoconductivity dynamics of photogenerated charges in the NWs. We conclude that radiative recombination dynamics is limited by hole trapping, whereas electrons are highly mobile until they recombine nonradiatively. We also resolve gradual decrease of mobility of photogenerated electrons assigned to electron trapping and detrapping in a distribution of trap states. We identify that the nonradiative recombination of charges is much slower than the decay of the photoluminescence signal. Further, we conclude that trapping of both electrons and holes as well as nonradiative recombination become faster with increasing Ga composition in GaxIn1-xP NWs. We have estimated early time electron mobility in GaxIn1-xP NWs and found it to be strongly dependent on Ga composition due to the contribution of electrons in the X-valley.

14.
Nano Lett ; 16(8): 4792-8, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27352041

RESUMO

We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

15.
Nano Lett ; 16(9): 5701-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27564139

RESUMO

We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.

16.
J Am Chem Soc ; 138(34): 10935-44, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27479751

RESUMO

Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.

17.
Nanotechnology ; 27(45): 455704, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27713183

RESUMO

In this paper we have investigated the dynamics of photo-generated charge carriers in a series of aerotaxy-grown GaAs nanowires (NWs) with different levels of Zn doping. Time-resolved photo-induced luminescence and transient absorption have been employed to investigate radiative (band edge transition) and non-radiative charge recombination processes, respectively. We find that the photo-luminescence (PL) lifetime of intrinsic GaAs NWs is significantly increased after growing an AlGaAs shell over them, indicating that an AlGaAs shell can effectively passivate the surface of aerotaxy-grown GaAs NWs. We observe that PL decay time as well as PL intensity decrease with increasing Zn doping, which can be attributed to thermally activated electron trapping with the trap density increased due to the Zn doping level.

18.
Nano Lett ; 15(11): 7238-44, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26421505

RESUMO

Measuring lifetime of photogenerated charges in semiconductor nanowires (NW) is important for understanding light-induced processes in these materials and is relevant for their photovoltaic and photodetector applications. In this paper, we investigate the dynamics of photogenerated charge carriers in a series of as-grown InP NW with different levels of sulfur (S) doping. We observe that photoluminescence (PL) decay time as well as integrated PL intensity decreases with increasing S doping. We attribute these observations to hole trapping with the trap density increased due to S-doping level followed by nonradiative recombination of trapped charges. This assignment is proven by observation of the trap saturation in three independent experiments: via excitation power and repetition rate PL lifetime dependencies and by PL pump-probe experiment.

19.
Nano Lett ; 15(3): 1603-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25706329

RESUMO

Fluorescence super-resolution microscopy showed correlated fluctuations of photoluminescence intensity and spatial localization of individual perovskite (CH3NH3PbI3) nanocrystals of size ∼200 × 30 × 30 nm(3). The photoluminescence blinking amplitude caused by a single quencher was a hundred thousand times larger than that of a typical dye molecule at the same excitation power density. The quencher is proposed to be a chemical or structural defect that traps free charges leading to nonradiative recombination. These trapping sites can be activated and deactivated by light.


Assuntos
Compostos de Cálcio/química , Compostos de Cálcio/efeitos da radiação , Cristalização/métodos , Medições Luminescentes/métodos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Óxidos/química , Óxidos/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Absorção de Radiação , Luz , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula
20.
J Am Chem Soc ; 137(51): 16043-8, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26636183

RESUMO

Despite the unprecedented interest in organic-inorganic metal halide perovskite solar cells, quantitative information on the charge transfer dynamics into selective electrodes is still lacking. In this paper, we report the time scales and mechanisms of electron and hole injection and recombination dynamics at organic PCBM and Spiro-OMeTAD electrode interfaces. On the one hand, hole transfer is complete on the subpicosecond time scale in MAPbI3/Spiro-OMeTAD, and its recombination rate is similar to that in neat MAPbI3. This was found to be due to a high concentration of dark charges, i.e., holes brought about by unintentional p-type doping of MAPbI3. Hence, the total concentration of holes in the perovskite is hardly affected by optical excitation, which manifested as similar decay kinetics. On the other hand, the decay of the photoinduced conductivity in MAPbI3/PCBM is on the time scale of hundreds of picoseconds to several nanoseconds, due to electron injection into PCBM and electron-hole recombination at the interface occurring at similar rates. These results highlight the importance of understanding the role of dark carriers in deconvoluting the complex photophysical processes in these materials. Moreover, optimizing the preparation processes wherein undesired doping is minimized could prompt the use of organic molecules as a more viable electrode substitute for perovskite solar cell devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA