Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 9(9): 1829-48, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20530633

RESUMO

In this study, we used imaging and proteomics to identify the presence of virus-associated cellular proteins that may play a role in respiratory syncytial virus (RSV) maturation. Fluorescence microscopy of virus-infected cells revealed the presence of virus-induced cytoplasmic inclusion bodies and mature virus particles, the latter appearing as virus filaments. In situ electron tomography suggested that the virus filaments were complex structures that were able to package multiple copies of the virus genome. The virus particles were purified, and the protein content was analyzed by one-dimensional nano-LC MS/MS. In addition to all the major virus structural proteins, 25 cellular proteins were also detected, including proteins associated with the cortical actin network, energy pathways, and heat shock proteins (HSP70, HSC70, and HSP90). Representative actin-associated proteins, HSC70, and HSP90 were selected for further biological validation. The presence of beta-actin, filamin-1, cofilin-1, HSC70, and HSP90 in the virus preparation was confirmed by immunoblotting using relevant antibodies. Immunofluorescence microscopy of infected cells stained with antibodies against relevant virus and cellular proteins confirmed the presence of these cellular proteins in the virus filaments and inclusion bodies. The relevance of HSP90 to virus infection was examined using the specific inhibitors 17-N-Allylamino-17-demethoxygeldanamycin. Although virus protein expression was largely unaffected by these drugs, we noted that the formation of virus particles was inhibited, and virus transmission was impaired, suggesting an important role for HSP90 in virus maturation. This study highlights the utility of proteomics in facilitating both our understanding of the role that cellular proteins play during RSV maturation and, by extrapolation, the identification of new potential targets for antiviral therapy.


Assuntos
Proteínas de Choque Térmico HSP90/química , Vírus Sinciciais Respiratórios/fisiologia , Vírion/fisiologia , Montagem de Vírus/fisiologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP90/fisiologia , Imunoprecipitação , RNA Interferente Pequeno , Vírion/química
2.
J Exp Med ; 205(6): 1423-34, 2008 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-18504306

RESUMO

The presence of serum bactericidal antibodies is a proven correlate of protection against systemic infection with the important human pathogen Neisseria meningitidis. We have identified three serogroup C N. meningitidis (MenC) isolates recovered from patients with invasive meningococcal disease that resist killing by bactericidal antibodies induced by the MenC conjugate vaccine. None of the patients had received the vaccine, which has been successfully introduced in countries in North America and Europe. The increased resistance was not caused by changes either in lipopolysaccharide sialylation or acetylation of the alpha2-9-linked polysialic acid capsule. Instead, the resistance of the isolates resulted from the presence of an insertion sequence, IS1301, in the intergenic region (IGR) between the sia and ctr operons, which are necessary for capsule biosynthesis and export, respectively. The insertion sequence led to an increase in the transcript levels of surrounding genes and the amount of capsule expressed by the strains. The increased amount of capsule was associated with down-regulation of the alternative pathway of complement activation, providing a generic mechanism by which the bacterium protects itself against bactericidal antibodies. The strains with IS1301 in the IGR avoided complement-mediated lysis in the presence of bactericidal antibodies directed at the outer membrane protein, PorA, or raised against whole cells.


Assuntos
Anticorpos Antibacterianos/imunologia , Meningite Meningocócica/imunologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/uso terapêutico , Neisseria meningitidis/imunologia , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Proteínas do Sistema Complemento/imunologia , Humanos , Imunidade Inata , Lipopolissacarídeos/imunologia , Meningite Meningocócica/sangue , Infecções Meningocócicas/sangue , Infecções Meningocócicas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA