Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 17(1): 29, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466981

RESUMO

BACKGROUND: The direct link between inflammatory bowel diseases and colorectal cancer is well documented. Previous studies have reported that some lactic acid bacterial strains could inhibit colon cancer progression however; the exact molecules involved have not yet been identified. So, in the current study, we illustrated the tumor suppressive effects of the newly identified Lactobacillus acidophilus DSMZ 20079 cell-free pentasaccharide against colon cancer cells. The chemical structure of the purified pentasaccharide was investigated by MALDI-TOF mass spectrum, 1D and 2D Nuclear Magnetic Resonance (NMR). The anticancer potentiality of the purified pentasaccharide against both Human colon cancer (CaCo-2) and Human breast cancer (MCF7) cell lines with its safety usage pattern were evaluated using cytotoxicity, annexin V quantification and BrdU incorporation assays. Also, the immunomodulatory effects of the identified compound were quantified on both LPS-induced PBMC cell model and cancer cells with monitoring the immunophenotyping of T and dendritic cell surface marker. At molecular level, the alteration in gene expression of both inflammatory and apoptotic pathways were quantified upon pentasaccharide-cellular treatment by RTqPCR. RESULTS: The obtained data of the spectroscopic analysis, confirmed the structure of the newly extracted pentasaccharide; (LA-EPS-20079) to be: α-D-Glc (1→2)][α-L-Fuc(1→4)] α-D-GlcA(1→2) α-D-GlcA(1→2) α-D-GlcA. This pentasaccharide, recorded safe dose on normal mammalian cells ranged from 2 to 5 mg/ml with cancer cells selectivity index, ranged of 1.96-51.3. Upon CaCo-2 cell treatment with the non-toxic dose of LA-EPS-20079, the inhibition percentage in CaCo-2 cellular viability, reached 80.65 with an increase in the ratio of the apoptotic cells in sub-G0/G1 cell cycle phase. Also, this pentasaccharide showed potentialities to up-regulate the expression of IKbα, P53 and TGF genes. CONCLUSION: The anticancer potentialities of LA-EPS-20079 oligosaccharides against human colon cancer represented through its regulatory effects on both apoptotic and NF-κB inflammatory pathways.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Lactobacillus acidophilus/metabolismo , NF-kappa B/metabolismo , Polissacarídeos Bacterianos/metabolismo , Animais , Apoptose , Humanos
2.
AAPS PharmSciTech ; 18(5): 1605-1616, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27620196

RESUMO

Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\KC\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.


Assuntos
Curativos Hidrocoloides , Carragenina , Lactobacillus delbrueckii/química , Álcool de Polivinil , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carragenina/química , Carragenina/farmacologia , Humanos , Teste de Materiais/métodos , Membranas Artificiais , Permeabilidade , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia
3.
Sci Rep ; 12(1): 14828, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050423

RESUMO

Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.


Assuntos
Lantana , Metabolômica , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Inflamação/tratamento farmacológico , Interleucina-2 , Lantana/química , Lantana/metabolismo , Metabolômica/métodos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem
4.
RSC Adv ; 11(59): 37049-37062, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496437

RESUMO

Colocynth has a long history of use in traditional medicine for treatment of various inflammatory diseases where it is commonly roasted before being applied for medical purposes to reduce its toxicity. This study aims at tracking the effect of heat processing on the metabolic profile of the peels, pulps and seeds of colocynth fruit using UPLC-QqQ-MS-based metabolomics. The analysis resulted in tentative identification of 72 compounds belonging to different chemical classes. With roasting, a decline was observed in the relative amounts of chemical constituents where 42, 25 and 29 compounds were down-regulated in the peels, pulps and seeds, respectively. EC100 values resulting in 100% cell viability were all higher in roasted samples compared to their relevant raw ones. Correlation analysis indicated that the main cytotoxic chemical markers were cucurbitacin glycosides and their genins. Further, ex vivo anti-inflammatory activity testing multivariate models revealed that unprocessed samples correlated with inhibition of TNF-α, IL-1ß and IFN-γ where quercetrin, calodendroside A, and hexanoic acid methyl ester were the most significant chemical markers, while processed samples showed correlation with IL-6 pro-inflammatory marker inhibition with protocatechuic and protocatechuic acid glycoside being the main correlated chemical markers.

5.
Appl Biochem Biotechnol ; 182(4): 1675-1693, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28236195

RESUMO

The aim of this investigation is to examine the anticancer activities of Balanites aegyptiaca fruit extract with its biogenic silver nanoparticles (AgNPs) against colon and liver cancer cells. B. aegyptiaca aqueous extract was fractionated according to polarity and by biosynthesized AgNP. The cytotoxicity of the extract, semi-purified fractions, and the AgNPs was examined on noncancerous cell lines. The safer fraction was subjected to ultra-performance liquid chromatography-MS to identify the major active constituents. The anticancer activities of the nontoxic doses of all the used treatments were tested against HepG2 and CaCo2 cells. The nontoxic dose of the B. aegyptiaca (0.63 mg/ml) extract showed high anti-proliferative activities against HepG2 and CaCo2 with a percentage of 81 and 77%, respectively. The butanol fraction was safer than the other two fractions with 46.3 and 90.35% anti-proliferative activity against Caco2 and HepG2 cells, respectively. The nontoxic dose of AgNPs (0.63 mg/ml) inhibits both HepG2 and Caco2 cells with a percentage of 84.5 and 83.4%, respectively. In addition, AgNPs regulate the expression of certain genes with folding higher than that of crude extract. Saponin-coated AgNPs showed great abilities to select the most anticancer ingredient(s) from the B. aegyptiaca extract with a more safety pattern than the polarity gradient fractionation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Balanites/química , Nanopartículas Metálicas/química , Saponinas/química , Saponinas/farmacologia , Prata/química , Esteróis/química , Esteróis/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Água/química
6.
Appl Biochem Biotechnol ; 180(4): 623-637, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27193257

RESUMO

In this study, we synthesized tungsten oxide (WO3) nanoplates, both crystallographic phases and the morphology of the samples were determined by powder x-ray diffraction and the scanning electron microscopy, respectively. The obtained data clarified that, the all prepared WO3·H2O samples were composed of large quantity of nanoplates. The cytotoxicity patterns of nanoplates were checked on both normal and cancer mammalian cell lines. Both nanoplates cytotoxicity did not exceed the 50 % inhibitory concentration (IC50) on the all normal tested cells even by using concentrations up to 1 mg/ml. In addition, orthorhombic tungsten oxide nanoplate was more potent against both Caco2 and Hela cells by showing inhibition percentages in cellular viability 64.749 and 72.27, respectively, and with cancer selectivity index reached 3.2 and 2.6 on both colon and cervix cancer, respectively. The anticancer effects of nanoplates were translated to alteration in both pro-apoptotic and anti-apoptotic genes expressions. Tungsten oxide nanoplates down regulated the expression of B cell lymphoma 2 (Bcl-2) and metalloproteinase-7 (MMP7) genes. In addition, orthorhombic tungsten oxide nanoplates showed more potentiation in IL2 and IL8 induction (40.43 pg/ml) and upregulation of TNF-α gene expression but with lower folds than Escherichia coli lipopolysaccharide (LPS) induction.


Assuntos
Neoplasias do Colo/enzimologia , Marcação de Genes , Metaloproteinase 7 da Matriz/genética , Nanopartículas/química , Óxidos/farmacologia , Tungstênio/farmacologia , Neoplasias do Colo do Útero/enzimologia , Antineoplásicos/farmacologia , Células CACO-2 , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA