Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1404603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38899227

RESUMO

Effective treatments for major depressive disorder (MDD) have long been needed. One hypothesis for the mechanism of depression involves a decrease in neuroactive steroids such as allopregnanolone, an endogenous positive allosteric modulator of the γ-aminobutyric acid-gated chloride channel (GABAA) receptor. In our previous study, we discovered that allopregnanolone, not diazepam, exhibited antidepressant-like effects in the social interaction test (SIT) of social defeat stress (SDS) model mice. However, the dynamics of neuronal activity underlying the antidepressant-like effect remain unknown. In the current study, we conducted local field potentials (LFPs) recordings from the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) during the SIT to elucidate the relationship between the antidepressant-like effect and neuronal oscillation. We discovered that allopregnanolone has antidepressant-like effects in the SIT of SDS model mice by decreasing intervals of repetitive social interaction (inter-event intervals), resulting in increase of total social interaction time. We also found that theta and beta oscillation increased in BLA at the onset of social interaction following administration of allopregnanolone, which differed from the effects of diazepam. Theta and beta power in BLA within the social interaction zone exhibited a positive correlation with interaction time. This increase of theta and beta power was negatively correlated with inter-event intervals. Regarding theta-band coordinated activity between the BLA and mPFC, theta power correlation decreased at the onset of social interaction with the administration of allopregnanolone. These findings suggest that theta activity in BLA following social interaction and the reduced theta-band coordinated activity between the BLA and mPFC are implicated in social interaction, which is one of the antidepressant behaviors. These differences in neural activity could elucidate the distinctive mechanism underlying antidepressant-like effects of neuroactive steroids, as opposed to benzodiazepines.

2.
Front Cell Neurosci ; 17: 1274459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259500

RESUMO

The rapid relief of depressive symptoms is a major medical requirement for effective treatments for major depressive disorder (MDD). A decrease in neuroactive steroids contributes to the pathophysiological mechanisms associated with the neurological symptoms of MDD. Zuranolone (SAGE-217), a neuroactive steroid that acts as a positive allosteric modulator of synaptic and extrasynaptic δ-subunit-containing GABAA receptors, has shown rapid-onset, clinically effective antidepressant action in patients with MDD or postpartum depression (PPD). Benzodiazepines, on the other hand, act as positive allosteric modulators of synaptic GABAA receptors but are not approved for the treatment of patients with MDD. It remains unclear how differences in molecular mechanisms contribute to the alleviation of depressive symptoms and the regulation of associated neuronal activity. Focusing on the antidepressant-like effects and neuronal activity of the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), we conducted a head-to-head comparison study of the neuroactive steroid allopregnanolone and the benzodiazepine diazepam using a mouse social defeat stress (SDS) model. Allopregnanolone but not diazepam exhibited antidepressant-like effects in a social interaction test in SDS mice. This antidepressant-like effect of allopregnanolone was abolished in extrasynaptic GABAA receptor δ-subunit knockout mice (δko mice) subjected to the same SDS protocol. Regarding the neurophysiological mechanism associated with these antidepressant-like effects, allopregnanolone but not diazepam increased theta oscillation in the BLA of SDS mice. This increase did not occur in δko mice. Consistent with this, allopregnanolone potentiated tonic inhibition in BLA interneurons via δ-subunit-containing extrasynaptic GABAA receptors. Theta oscillation in the mPFC of SDS mice was also increased by allopregnanolone but not by diazepam. Finally, allopregnanolone but not diazepam increased frontal theta activity in electroencephalography recordings in naïve and SDS mice. Neuronal network alterations associated with MDD showed decreased frontal theta and beta activity in depressed SDS mice. These results demonstrated that, unlike benzodiazepines, neuroactive steroids increased theta oscillation in the BLA and mPFC through the activation of δ-subunit-containing GABAA receptors, and this change was associated with antidepressant-like effects in the SDS model. Our findings support the notion that the distinctive mechanism of neuroactive steroids may contribute to the rapid antidepressant effects in MDD.

3.
Nat Commun ; 14(1): 2433, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106002

RESUMO

In some models, animals approach aversive stimuli more than those housed in an enriched environment. Here, we found that male mice in an impoverished and unstimulating (i.e., boring) chamber without toys sought aversive air puffs more often than those in an enriched chamber. Using this animal model, we identified the insular cortex as a regulator of aversion-seeking behavior. Activation and inhibition of the insular cortex increased and decreased the frequencies of air-puff self-stimulation, respectively, and the firing patterns of insular neuron ensembles predicted the self-stimulation timing. Dopamine levels in the ventrolateral striatum decreased with passive air puffs but increased with actively sought puffs. Around 20% of mice developed intense self-stimulation despite being offered toys, which was prevented by administering opioid receptor antagonists. This study establishes a basis for comprehending the neural underpinnings of usually avoided stimulus-seeking behaviors.


Assuntos
Corpo Estriado , Dopamina , Camundongos , Masculino , Animais , Dopamina/fisiologia , Corpo Estriado/fisiologia , Neurônios
4.
PLoS One ; 13(4): e0195404, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694374

RESUMO

Appropriate decisions involve at least two aspects: the speed of the decision and the correctness of the decision. Although a quick and correct decision is generally believed to work favorably, these two aspects may be interdependent in terms of overall task performance. In this study, we scrutinized learning behaviors in an operant task in which rats were required to poke their noses into either of two holes by referring to a light cue. All 22 rats reached the learning criterion, an 80% correct rate, within 4 days of testing, but they were diverse in the number of sessions spent to reach the learning criterion. Individual analyses revealed that the mean latency for responding was negatively correlated with the number of sessions until learning, suggesting that the rats that responded more rapidly to the cues learned the task more slowly. For individual trials, the mean latency for responding in correct trials (LC) was significantly longer than that in incorrect trials (LI), suggesting that, on average, long deliberation times led to correct answers in the trials. The success ratio before learning was not correlated with the learning speed. Thus, deliberative decision-making, rather than overall correctness, is critical for learning.


Assuntos
Tomada de Decisões , Aprendizagem , Tempo de Reação , Animais , Masculino , Testes Psicológicos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA