Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Arch Insect Biochem Physiol ; 113(1): e22003, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36694471

RESUMO

Idiobiont parasitoids using other insects as hosts sabotage the host growth and development to ensure their offspring survival. Numerous studies have discovered that insect development is subtly regulated by the conserved insulin signaling pathway. However, little is known about how wasp parasitization disrupts host development controlled by the insulin signaling pathway. Here we address this study to determine the effect of wasp parasitism on host Spodoptera frugiperda development using the idiobiont parasitoid Microplitis manilae as a model. Upon M. manilae parasitization, the body weight, body length, and food consumption of host insect were dramatically reduced compared to the unparasitized S. frugiperda. We next identified the core genes involved in host insulin signaling pathway and further analyzed the domain organizations of these genes. Phylogenetic reconstruction based on the insulin receptors clustered S. frugiperda together with other noctuidae insects. In the latter study, we profiled the expression patterns of host insulin signaling pathway genes in response to M. manilae parasitization at 2, 24, and 48 h, significant decreases in mRNA levels were recorded in S. frugiperda larvae upon 24 and 48 h parasitization. These current findings substantially add to our understanding of the physiological interaction between parasitoid and host insects, thus contributing to revealing the molecular mechanism of parasitic wasps regulating host development.


Assuntos
Insulina , Vespas , Animais , Filogenia , Larva , Spodoptera , Transdução de Sinais , Interações Hospedeiro-Parasita/fisiologia
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498840

RESUMO

Octopamine (OA) is structurally and functionally similar to adrenaline/noradrenaline in vertebrates, and OA modulates diverse physiological and behavioral processes in invertebrates. OA exerts its actions by binding to specific octopamine receptors (OARs). Functional and pharmacological characterization of OARs have been investigated in several insects. However, the literature on OARs is scarce for parasitoids. Here we cloned three ß-adrenergic-like OARs (CcOctßRs) from Cotesia chilonis. CcOctßRs share high similarity with their own orthologous receptors. The transcript levels of CcOctßRs were varied in different tissues. When heterologously expressed in CHO-K1 cells, CcOctßRs induced cAMP production, and were dose-dependently activated by OA, TA and putative octopaminergic agonists. Their activities were inhibited by potential antagonists and were most efficiently blocked by epinastine. Our study offers important information about the molecular and pharmacological properties of ß-adrenergic-like OARs from C. chilonis that will provide the basis to reveal the contribution of individual receptors to the physiological processes and behaviors in parasitoids.


Assuntos
Himenópteros , Receptores de Amina Biogênica , Animais , Adrenérgicos , Receptores de Amina Biogênica/metabolismo , Octopamina/farmacologia , Octopamina/metabolismo
3.
Arch Insect Biochem Physiol ; 105(3): e21736, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918775

RESUMO

Parasitic wasps inject various virulence factors into the host insects while laying eggs, among which the venom proteins, one of the key players in host insect/parasitoid relationships, act in host cellular and humoral immune regulation to ensure successful development of wasp progeny. Although the investigations into actions of venom proteins are relatively ample in larval parasitoids, their regulatory mechanisms have not been thoroughly understood in pupal parasitoids. Here, we identified a venom protein, Kazal-type serine protease inhibitor, in the pupal ectoparasitoid Pachycrepoideus vindemiae (PvKazal). Sequence analysis revealed that PvKazal is packed by a signal peptide and a highly conserved "Kazal" domain. Quantitative polymerase chain reaction analysis recorded a higher transcript level of PvKazal in the venom apparatus relative to that in the carcass, and the PvKazal messenger RNA level appeared to reach a peak on day 5 posteclosion. Recombinant PvKazal strongly inhibited the hemolymph melanization of host Drosophila melanogaster. Additionally, the heterologous expression of PvKazal in transgenic Drosophila reduced the crystal cell numbers and blocked the melanization of host pupal hemolymph. Our present work underlying the roles of PvKazal undoubtedly increases the understanding of venom-mediated host-parasitoid crosstalk.


Assuntos
Drosophila melanogaster/parasitologia , Inibidores de Serinopeptidase do Tipo Kazal/farmacologia , Venenos de Vespas/farmacologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Hemolinfa/imunologia , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Pupa/efeitos dos fármacos , Pupa/parasitologia , RNA Mensageiro , Inibidores de Serinopeptidase do Tipo Kazal/química , Venenos de Vespas/química , Vespas
4.
Arch Insect Biochem Physiol ; 103(2): e21632, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31621105

RESUMO

Biogenic amines (BAs), such as octopamine, tyramine, dopamine, serotonin, and acetylcholine regulate various behaviors and physiological functions in insects. Here, we identified seven genes encoding BA biosynthetic enzymes and 16 genes encoding BA G protein-coupled receptors in the genome of the endoparasitoid wasp, Pteromalus puparum. We compared the genes with their orthologs in its host Pieris rapae and the related ectoparasitic wasp Nasonia vitripennis. All the genes show high (>90%) identity to orthologs in N. vitripennis. P. puparum and N. vitripennis have the smallest number of BA receptor genes among the insect species we investigated. We then analyzed the expression profiles of the genes, finding those acting in BA biosynthesis were highly expressed in adults and larvae and those encoding BA receptors are highly expressed in adults than immatures. Octα1R and 5-HT7 genes were highly expressed in salivary glands, and a high messenger RNA level of 5-HT1A was found in venom apparatuses. We infer that BA signaling is a fundamental component of the organismal organization, homeostasis and operation in parasitoids, some of the smallest insects.


Assuntos
Aminas Biogênicas/metabolismo , Borboletas/genética , Proteínas de Insetos/genética , Vespas/genética , Sequência de Aminoácidos , Animais , Borboletas/química , Borboletas/metabolismo , Borboletas/parasitologia , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Filogenia , Pupa/genética , Pupa/metabolismo , Alinhamento de Sequência , Vespas/enzimologia , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
5.
Arch Insect Biochem Physiol ; 103(2): e21625, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31565815

RESUMO

In insects, neuropeptides constitute a group of signaling molecules that act in regulation of multiple physiological and behavioral processes by binding to their corresponding receptors. On the basis of the bioinformatic approaches, we screened the genomic and transcriptomic data of the parasitoid wasp, Pteromalus puparum, and annotated 36 neuropeptide precursor genes and 33 neuropeptide receptor genes. Compared to the number of precursor genes in Bombyx mori (Lepidoptera), Chilo suppressalis (Lepidoptera), Drosophila melanogaster (Diptera), Nilaparvata lugens (Hemiptera), Apis mellifera (Hymenoptera), and Tribolium castaneum (Coleoptera), P. puparum (Hymenoptera) has the lowest number of neuropeptide precursor genes. This lower number may relate to its parasitic life cycle. Transcriptomic data of embryos, larvae, pupae, adults, venom glands, salivary glands, ovaries, and the remaining carcass revealed stage-, sex-, and tissue-specific expression patterns of the neuropeptides, and their receptors. These data provided basic information about the identity and expression profiles of neuropeptides and their receptors that are required to functionally address their biological significance in an endoparasitoid wasp.


Assuntos
Proteínas de Insetos/genética , Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Vespas/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Filogenia , Pupa/genética , Pupa/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Alinhamento de Sequência , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
6.
Arch Insect Biochem Physiol ; 103(2): e21634, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31587360

RESUMO

Pteromalus puparum is a gregarious pupal endoparasitoid with a wide host range. It deposits eggs into pierid and papilionid butterfly pupae. Glutathione S-transferases (GSTs) are a family of multifunctional detoxification enzymes that act in xenobiotic metabolism in insects. Insect genome projects have facilitated identification and characterization of GST family members. We identified 20 putative GSTs in the P. puparum genome, including 19 cytosolic and one microsomal. Phylogenetic analysis showed that P. puparum GSTs are clustered into Hymenoptera-specific branches. Transcriptomic data of embryos, larvae, female pupae, male pupae, female adults, male adults, venom glands, carcass, salivary glands, and ovaries revealed stage-, sex-, and tissue-specific expression patterns of GSTs in P. puparum. This is the most comprehensive study of genome-wide identification, characterization, and expression profiling of GST family in hymenopterans. Our results provide valuable information for understanding the metabolic adaptation of this wasp.


Assuntos
Glutationa Transferase/genética , Proteínas de Insetos/genética , Vespas/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Feminino , Perfilação da Expressão Gênica , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Filogenia , Pupa/genética , Pupa/metabolismo , Alinhamento de Sequência , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
7.
BMC Genomics ; 16: 525, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26173787

RESUMO

BACKGROUND: Neurotransmitter signaling systems play crucial roles in multiple physiological and behavioral processes in insects. Genome wide analyses of de novo transcriptome sequencing and gene specific expression profiling provide rich resources for studying neurotransmitter signaling pathways. The rice striped stem borer, Chilo suppressalis is a destructive rice pest in China and other Asian countries. The characterization of genes involved in neurotransmitter biosynthesis and transport could identify potential targets for disruption of the neurochemical communication and for crop protection. RESULTS: Here we report de novo sequencing of the C. suppressalis central nervous system transcriptome, identification and expression profiles of genes putatively involved in neurotransmitter biosynthesis, packaging, and recycling/degradation. A total of 54,411 unigenes were obtained from the transcriptome analysis. Among these unigenes, we have identified 32 unigenes (31 are full length genes), which encode 21 enzymes and 11 transporters putatively associated with biogenic aminergic signaling, acetylcholinergic signaling, glutamatergic signaling and GABAergic signaling. RT-PCR and qRT-PCR results indicated that 12 enzymes were highly expressed in the central nervous system and all the transporters were expressed at significantly high levels in the central nervous system. In addition, the transcript abundances of enzymes and transporters in the central nervous system were validated by qRT-PCR. The high expression levels of these genes suggest their important roles in the central nervous system. CONCLUSIONS: Our study identified genes potentially involved in neurotransmitter biosynthesis and transport in C. suppressalis and these genes could serve as targets to interfere with neurotransmitter production. This study presents an opportunity for the development of specific and environmentally safe insecticides for pest control.


Assuntos
Lepidópteros/genética , Sistema Nervoso/metabolismo , Neurotransmissores/biossíntese , Transcriptoma , Animais , Enzimas/classificação , Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/parasitologia , Filogenia , Caules de Planta/parasitologia , Análise de Sequência de RNA , Transdução de Sinais
8.
J Virol ; 88(22): 13460-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210181

RESUMO

UNLABELLED: The majority of plant viruses are vectored by arthropods via persistent-circulative or noncirculative transmission. Previous studies have shown that specific binding sites for noncirculative viruses reside within the stylet or foregut of insect vectors, whereas the transmission mechanisms of circulative viruses remain ambiguous. Here we report the critical roles of whitefly primary salivary glands (PSGs) in the circulative transmission of two begomoviruses. The Middle East Asia Minor 1 (MEAM1) species of the whitefly Bemisia tabaci complex efficiently transmits both Tomato yellow leaf curl China virus (TYLCCNV) and Tomato yellow leaf curl virus (TYLCV), whereas the Mediterranean (MED) species transmits TYLCV but not TYLCCNV. PCR and fluorescence in situ hybridization experiments showed that TYLCCNV efficiently penetrates the PSGs of MEAM1 but not MED whiteflies. When a fragment of the coat protein of TYLCCNV was exchanged with that of TYLCV, mutated TYLCCNV accumulated in the PSGs of MED whiteflies, while mutant TYLCV was nearly undetectable. Confocal microscopy revealed that virion transport in PSGs follows specific paths to reach secretory cells in the central region, and the accumulation of virions in the secretory region of PSGs was correlated with successful virus transmission. Our findings demonstrate that whitefly PSGs, in particular the cells around the secretory region, control the specificity of begomovirus transmission. IMPORTANCE: Over 75% of plant viruses are transmitted by insects. However, the mechanisms of virus transmission by insect vectors remain largely unknown. Begomoviruses and whiteflies are a complex of viruses and vectors which threaten many crops worldwide. We investigated the transmission of two begomoviruses by two whitefly species. We show that specific cells of the whitefly primary salivary glands control viral transmission specificity and that virion transport in the glands follows specific paths to reach secretory cells in the central region and then to reach the salivary duct. Our results indicate that the secretory cells in the central region of primary salivary glands determine the recognition and transmission of begomoviruses. These findings set a foundation for future research not only on circulative plant virus transmission but also on other human and animal viruses transmitted by arthropod vectors.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Glândulas Salivares/virologia , Viroses/transmissão , Animais , Feminino , Hibridização in Situ Fluorescente , Microscopia Confocal , Reação em Cadeia da Polimerase
9.
Arch Insect Biochem Physiol ; 88(2): 101-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25256903

RESUMO

Odorant binding proteins (OBPs) are crucial for insects to detect food, mates, predators, or other purposes. They are mostly located on antennae and other olfactory sensilla. In this study, we identified an OBP from the venom of Pteromalus puparum, designated as PpOBP. The cDNA of PpOBP is 517 bp in length, encoding 132 amino acids. Phylogenetic analysis revealed that PpOBP was clustered with OBP68 and OBP67 of Nasonia vitripennis. PpOBP was highly expressed in the venom apparatus at the transcriptional and translational levels. PpOBP was located in all parts of venom apparatus including venom gland, venom reservoir, and Dufour's gland. During 0-6 days post adult eclosion, the PpOBP mRNA level peaked at 2 days in the venom apparatus, whereas the protein remained at a high level. In the venom apparatus, the PpOBP mRNA was significantly upregulated following feeding with honey and parasitization. We propose that PpOBP is involved in parasitoid-host interactions.


Assuntos
Receptores Odorantes/química , Venenos de Vespas/química , Vespas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Borboletas/parasitologia , DNA Complementar/genética , Interações Hospedeiro-Parasita , Larva/parasitologia , Dados de Sequência Molecular , Filogenia , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vespas/genética
10.
Arch Insect Biochem Physiol ; 90(3): 140-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26241821

RESUMO

The small cabbage butterfly, Pieris rapae, is an important pest of cruciferous corps, and Pteromalus puparum is a predominant pupal endoparasitoid wasp of this butterfly. For successful development of parasitoid offspring, female parasitoids usually introduce one or several kinds of maternal factors into the hemocoels during oviposition to suppress host immunity. To investigate the early changes in host immune-related genes following parasitization, we analyzed transcriptomes of parasitized and unparasitized, control, host pupae. Approximately 17.7 and 19.3 million paired-end reads were generated from nonparasitized and parasitized host pupae, and assembled de novo into 45,639 transcripts and 27,659 nonredundant unigenes. The average unigene length was 790 bp. A total 18,377 of 27,659 unigenes were annotated and we identified 557 differentially expressed unigenes in host pupae at 1 h after parasitization, of which 21 were immune-related. Parasitization led to downregulation of most pattern recognition receptors and upregulation of all serine protease inhibitors. The transcirptomic profile of P. rapae is considerably affected by parasitization. This study provides valuable sources for future investigations of the molecular interaction between P. puparum and its host P. rapae.


Assuntos
Borboletas/metabolismo , Vespas/fisiologia , Animais , Borboletas/imunologia , Borboletas/parasitologia , Interações Hospedeiro-Parasita , Imunidade Inata , Pupa/imunologia , Pupa/metabolismo , Pupa/parasitologia , Transcriptoma
11.
J Neurochem ; 129(1): 37-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24279508

RESUMO

The octopamine and tyramine, as the invertebrate counterparts of the vertebrate adrenergic transmitters, control and modulate many physiological and behavioral processes. Both molecules mediate their effects by binding to specific receptors belonging to the superfamily of G-protein-coupled receptors. So far, four families of octopamine and tyramine receptors have been reported. Here, we described the functional characterization of one putative octopamine/tyramine receptor gene from the rice stem borer, Chilo suppressalis. By a mechanism of alternative splicing, this receptor gene (CsOA3) encodes two molecularly distinct transcripts, CsOA3S and CsOA3L. CsOA3L differs from CsOA3S on account of the presence of an additional 30 amino acids within the third intracellular loop. When heterologously expressed, both receptors cause increases of intracellular Ca(2+) concentration. The short form, CsOA3S, was activated by both octopamine and tyramine, resulting in decreased intracellular cAMP levels ([cAMP]i ) in a dose-dependent manner, whereas dopamine and serotonin are not effective. However, CsOA3L did not show any impact on [cAMP]i . Studies with series of agonists and antagonists confirmed that CsOA3 has a different pharmacological profile from that of other octopamine receptor families. The CsOA3 is, to our knowledge, a novel family of insect octopamine receptors.


Assuntos
Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Amina Biogênica/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Dados de Sequência Molecular , Mariposas , Octopamina/farmacologia , Filogenia , Receptores de Amina Biogênica/agonistas , Transdução de Sinais/efeitos dos fármacos
12.
J Neurochem ; 131(6): 767-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25187179

RESUMO

The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G-protein-coupled receptors. Five 5-HT receptor subtypes have been reported in Drosophila that share high similarity with mammalian 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT7 receptors. We isolated a cDNA (Pr5-HT8 ) from larval Pieris rapae, which shares relatively low similarity to the known 5-HT receptor classes. After heterologous expression in HEK293 cells, Pr5-HT8 mediated increased [Ca(2+)]i in response to low concentrations (< 10 nM) of 5-HT. The receptor did not affect [cAMP]i even at high concentrations (> 10 µM) of 5-HT. Dopamine, octopamine, and tyramine did not influence receptor signaling. Pr5-HT8 was also activated by various 5-HT receptor agonists including 5-methoxytryptamine, (±)-8-Hydroxy-2-(dipropylamino) tetralin, and 5-carboxamidotryptamine. Methiothepin, a non-selective 5-HT receptor antagonist, activated Pr5-HT8 . WAY 10635, a 5-HT1A antagonist, but not SB-269970, SB-216641, or RS-127445, inhibited 5-HT-induced [Ca(2+)]i increases. We infer that Pr5-HT8 represents the first recognized member of a novel 5-HT receptor class with a unique pharmacological profile. We found orthologs of Pr5-HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee or parasitoid wasps. This is likely to be an invertebrate-specific receptor because there were no similar receptors in mammals. We isolated a cDNA (Pr5-HT8) from larval Pieris rapae, which shares relatively low similarity to the known GPCRs. After heterologous expression in HEK293 cells, Pr5-HT8 mediated increased [Ca(2+)]i in response to low concentrations (< 10 nM) of 5-HT and various 5-HT receptor agonists. We found orthologs of Pr5-HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee, parasitoid wasps, or mammals.


Assuntos
Benzamidas/farmacologia , Receptores de Serotonina/efeitos dos fármacos , Serotonina/metabolismo , Animais , Abelhas , Borboletas , Células Cultivadas , Larva/efeitos dos fármacos , Larva/metabolismo , Metiotepina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
13.
Arch Insect Biochem Physiol ; 85(3): 164-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24532462

RESUMO

The Middle East-Minor 1 cryptic species (MEAM1), Bemisia tabaci (Gennadius) is a globally invasive pest. It spreads widely due to its high fecundity and mutualistic interactions with the virus they vector. Feeding on virus (tomato yellow leaf curl China virus, TYLCCNV)-infected host plants improves their fecundity, however, the key factor regulating the signaling transduction in reproduction of whitefly remains to be identified. Here, we cloned a full length cDNA encoding an insulin-like peptide in MEAM1 (BtILP1) and investigated its expression profile, functions, and the expression induced by feeding on virus-infected tobacco plants. The full length cDNA of BtILP1 was 590 bps and encoded an open reading frame containing 149 amino acid residues. Multiple sequences alignment results showed BtILP1 contained the structural features typical of the insulin family. Expression dynamics associated with development showed the expression level of BtILP1 peaked at 5 days posteclosion (PE). During 1 to 3 days PE, BtILP1 was expressed highly in the head and abdomen of female adults and highly in the head during 5 to 7 days PE. Knockdown of the BtILP1 expression also impaired vitellogenin gene expression at both transcript and protein levels. Downregulating BtILP1 expression decreased fecundity of female adults and hatching rate of eggs. Feeding on virus-infected tobacco increased BtILP1 expression in MEAM1 female adults. We infer feeding on begomovirus-infected tobacco enhances the reproduction of MEAM1 by inducing BtILP1 expression. Our results give a new sight into the mutualistic interactions between virus and its insect vector.


Assuntos
Regulação da Expressão Gênica , Hemípteros/fisiologia , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Begomovirus/fisiologia , DNA Complementar/genética , DNA Complementar/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Fertilidade/fisiologia , Hemípteros/genética , Hemípteros/metabolismo , Hemípteros/virologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Dados de Sequência Molecular , Interferência de RNA , Alinhamento de Sequência , Nicotiana/fisiologia , Nicotiana/virologia , Transcriptoma
14.
Arch Insect Biochem Physiol ; 83(4): 211-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23818091

RESUMO

Insect hosts have evolved potent innate immunity against invasion by parasitoid wasps. Host/parasitoids live in co-evolutionary relationships. Nasonia vitripennis females inject venom into their dipteran hosts just prior to laying eggs on the host's outer integument. The parasitoid larvae are ectoparasitoids because they feed on their hosts within the puparium, but do not enter the host body. We investigated the influence of N. vitripennis venom on the gene expression profile of hemocytes of their hosts, pupae of the housefly, Musca domestica. We prepared venom by isolating venom glands and treated experimental host pupae with venom. We used suppression subtractive hybridization (SSH) to determine the influence of venom on hemocyte gene expression. At 1 h post treatment, we recorded decreases in transcript levels of 133 EST clones derived from forward a subtractive library of host hemocytes and upregulation in transcript levels of 111 EST clones from the reverse library. These genes are related to immune and stress response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, and transcription/translation regulation. We verified the reliability of our data with reverse transcription quantitative real-time PCR analysis of randomly selected genes, and with assays of enzyme activities. These analyses showed that the expression level of all selected genes were downregulated after venom treatment. Outcomes of our experiments support the hypothesis that N. vitripennis venom influences the gene expression in host hemocytes. We conclude that the actions of venom on host gene expression influence host biology in ways that benefit the development and emergence of the next generation of parasitoids.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/metabolismo , Moscas Domésticas/metabolismo , Moscas Domésticas/parasitologia , Venenos de Vespas/toxicidade , Vespas/química , Análise de Variância , Animais , Sequência de Bases , Primers do DNA/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Interações Hospedeiro-Parasita/fisiologia , Dados de Sequência Molecular , Pupa/metabolismo , Pupa/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fatores de Tempo
15.
Brain Behav Immun ; 26(6): 942-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22561607

RESUMO

Octopamine (OA), the insect equivalent of norepinephrine, links the nervous system and immune system in insects. This study examines the underlying molecular mechanisms (i.e. second messenger systems) mediating OA effects on insect immune cells. At low concentrations (<1µM), OA stimulatedhemocyte spreading and phagocytosis in the larval Lepidopteran (caterpillar) Chilo suppressalis, whereas at high concentrations (>10 µM), OA inhibited hemocyte spreading and phagocytosis. Similarly, OA concentration had differential effects on two intracellular signaling pathways, Ca(2+) and cAMP. Low concentrations of OA increased intracellular Ca(2+), but only high concentrations of OA (>1 µM) led to an increase in both Ca(2+) and cAMP. We identified an α-adrenergic-like octopamine receptor in this species (CsOA1) and confirmed that it is expressed in hemocytes. After heterologous expression in HEK-293 cells, the CsOA1 receptor produced the same OA concentration-dependent responses on intracellular Ca(2+) and cAMP as had been observed in hemocytes. These findings support earlier work showing that OA has both stimulatory and suppressive effects on immune responses, depending on the OA concentration. Our evidence suggests that these biphasic effects are mediated by an octopamine receptor signaling through intracellular Ca(2+) and cAMP second messenger pathways. Stress hormones/neuromodulators have complex effects on immune function in animals across phyla. This complexity may be mediated, in part, by conserved connections between adrenergic-like G-coupled protein receptors and second messenger systems.


Assuntos
Hemócitos/metabolismo , Imunidade Celular/fisiologia , Lepidópteros/fisiologia , Octopamina/fisiologia , Receptores Adrenérgicos alfa/efeitos dos fármacos , Receptores de Amina Biogênica/efeitos dos fármacos , Estresse Fisiológico/imunologia , Sequência de Aminoácidos , Animais , Bioensaio , Cálcio/metabolismo , Células Cultivadas , Clonagem Molecular , AMP Cíclico/metabolismo , Células HEK293 , Hemócitos/imunologia , Humanos , Hibridização in Situ Fluorescente , Larva/fisiologia , Dados de Sequência Molecular , Fagocitose/fisiologia , RNA/genética , Sistemas do Segundo Mensageiro/fisiologia
16.
Transgenic Res ; 21(5): 1023-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22252123

RESUMO

Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.


Assuntos
Artrópodes/efeitos dos fármacos , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Animais , Artrópodes/crescimento & desenvolvimento , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , China , Ecossistema , Endotoxinas/genética , Endotoxinas/metabolismo , Monitoramento Ambiental/métodos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Oryza/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Transformação Genética
17.
Transgenic Res ; 21(2): 279-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21688166

RESUMO

In this study, the non-target effects of Bt rice "KMD2" expressing a Cry1Ab protein on the performance of the brown planthopper (BPH), Nilaparvata lugens, over multiple generations were evaluated under laboratory and field conditions. In the laboratory, BPH was reared to observe the impact of the Bt rice as compared to its parental non-Bt cultivar Xiushui 11, while the population dynamics and oviposition performance of BPH were investigated in the field. The survival of BPH nymphs fed Bt and non-Bt rice did not differ significantly. The nymph developmental duration of BPH was significantly delayed by the Bt rice by comparison with the non-Bt rice for the 1st and 2nd but not the 4th generation. Most importantly, the fecundity of BPH on the Bt rice was significantly decreased in every generation when compared with the non-Bt rice. In the field investigations, the population density of BPH nymphs was significantly lower in the Bt rice field. However, the temporal pattern of population dynamics of BPH adults was similar between the Bt and non-Bt rice, presumably due to migratory interference of the adults. In the Bt rice field, the percentage of tillers with eggs and the number of eggs per tiller were also significantly lower from tillering to mature stage. Additionally, Cry1Ab protein could not be detected in guts from single BPH adults. In general, our results suggest that the Bt rice "KMD2" could not stimulate an outbreak of BPH.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Regulação da Expressão Gênica de Plantas , Genes Sintéticos , Hemípteros/patogenicidade , Proteínas Hemolisinas/genética , Oryza/parasitologia , Migração Animal , Animais , Toxinas de Bacillus thuringiensis , Feminino , Fertilidade , Hemípteros/crescimento & desenvolvimento , Hemípteros/fisiologia , Herbivoria/fisiologia , Longevidade , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oviposição , Contagem de Ovos de Parasitas , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Densidade Demográfica , Dinâmica Populacional , Análise de Sobrevida
18.
J Exp Biol ; 215(Pt 15): 2646-52, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22786641

RESUMO

Octopamine, the invertebrate counterpart of adrenaline and noradrenaline, plays a key role in regulation of many physiological and behavioral processes in insects. It modulates these functions through binding to specific octopamine receptors, which are typical rhodopsin-like G-protein coupled receptors. A cDNA encoding a seven-transmembrane receptor was cloned from the nerve cord of the rice stem borer, Chilo suppressalis, viz. CsOA2B2, which shares high sequence similarity to CG6989, a Drosophila ß-adrenergic-like octopamine receptor (DmOctß2R). We generated an HEK-293 cell line that stably expresses CsOA2B2 in order to examine the functional and pharmacological properties of this receptor. Activation of CsOA2B2 by octopamine increased the production of cAMP in a dose-dependent manner (EC(50)=2.33 nmol l(-1)), with a maximum response at 100 nmol l(-1). Tyramine also activated the receptor but with much less potency than octopamine. Dopamine and serotonin had marginal effects on cAMP production. Using a series of known agonists and antagonists for octopamine receptors, we observed a rather unique pharmacological profile for CsOA2B2 through measurements of cAMP. The rank order of potency of the agonists was naphazoline > clonidine. The activated effect of octopamine is abolished by co-incubation with phentolamine, mianserin or chlorpromazine. Using in vivo pharmacology, CsOA2B2 antagonists mianserin and phentolamine impaired the motor ability of individual rice stem borers. The results of the present study are important for a better functional understanding of this receptor as well as for practical applications in the development of environmentally sustainable pesticides.


Assuntos
Mariposas/metabolismo , Oryza/parasitologia , Caules de Planta/parasitologia , Receptores Adrenérgicos beta/metabolismo , Receptores de Amina Biogênica/metabolismo , Sequência de Aminoácidos , Animais , Comportamento Animal/fisiologia , Bioensaio , Clonagem Molecular , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Locomoção/fisiologia , Dados de Sequência Molecular , Mariposas/genética , Filogenia , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/genética , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Arch Insect Biochem Physiol ; 79(4-5): 247-63, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22517445

RESUMO

Six heat shock protein (HSP) genes from five HSP families in the parasitoid, Pteromalus puparum, were evaluated for their response to temperature (-15 ~ 3°C , and 30 ~ 42°C for 1 h), heavy metals (0.5 ~ 5 mM Cd(2+) and Cu(2+) for 24 h and 60 h), and starvation (24 h). Compared with other insect HSPs, all conserved motifs are found in P. puparum HSPs, and they are very similar to those of the recently sequenced ectoparasitoid Nasonia vitripennis. The temporal gene expression patterns indicated that these six HSP genes were all heat-inducible, of which hsp40 was the most inducible. The temperatures for maximal HSP induction at high and low temperature zone were 36 or 39°C and -3°C, respectively. In the hot zone, all HSP genes have the same initial temperature (33°C) for up-regulation. Low concentrations of Cd(2+) for a short-term promoted the expression of all HSP genes, but not high concentrations or long-term treatments. Cu(2+) stress for 24 h increased expression of nearly all HSP. Four HSP genes changed after starvation. We infer that all six HSP genes are sensitive to heat. This may help understand the absence of P. puparum during the summer and winter. The expression profiles of six HSP genes in P. puparum under heavy metal stress indicates that HSP is a short-term response to cellular distress or injury induced by Cd(2+) and Cu(2+).


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Insetos/genética , Estresse Fisiológico , Vespas/genética , Animais , Cádmio , Clonagem Molecular , Temperatura Baixa , Cobre , Feminino , Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Proteínas de Insetos/metabolismo , Fases de Leitura Aberta , Inanição , Vespas/metabolismo
20.
Annu Rev Entomol ; 56: 81-101, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20868281

RESUMO

From the first insect-resistant genetically modified (IRGM) rice transformation in 1989 in China to October 2009 when the Chinese Ministry of Agriculture issued biosafety certificates for commercial production of two cry1Ab/Ac Bacillus thuringiensis (Bt) lines, China made a great leap forward from IRGM rice basic research to potential commercialization of the world's first IRGM rice. Research has been conducted on developing IRGM rice, assessing its environmental and food safety impacts, and evaluating its socioeconomic consequences. Laboratory and field tests have confirmed that these two Bt rice lines can provide effective and economic control of the lepidopteran complex on rice with less risk to the environment than present practices. Commercializing these Bt plants, while developing other GM plants that address the broader complex of insects and other pests, will need to be done within a comprehensive integrated pest management program to ensure the food security of China and the world.


Assuntos
Oryza/genética , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , China , Endotoxinas/genética , Proteínas Hemolisinas/genética , Controle de Insetos , Oryza/economia , Oryza/fisiologia , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA