Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(36): 19856-19865, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37653575

RESUMO

Introducing an external visible-light field would be a promising strategy to improve the activity of the electrocatalytic CO2 reduction reaction (CO2RR), but it still remains a challenge due to the short excited-state lifetime of active sites. Herein, Ru(bpy)3Cl2 struts as powerful photosensitive donors were immobilized into the backbones of Co-porphyrin-based covalent organic frameworks (named Co-Bpy-COF-Rux, x is the molar ratio of Ru and Co species, x = 1/2 and 2/3) via coordination bonds, for the photo-coupled CO2RR to produce CO. The optimal Co-Bpy-COF-Ru1/2 displays a high CO Faradaic efficiency of 96.7% at -0.7 V vs reversible hydrogen electrode (RHE) and a CO partial current density of 16.27 mA cm-2 at -1.1 V vs RHE under the assistance of light, both of which were far surpassing the values observed in the dark. The significantly enhanced activity is mainly attributed to the incorporation of a Ru(bpy)3Cl2 donor with long excited-state lifetime and concomitantly giant built-in electric field in Co-Bpy-COF-Ru1/2, which efficiently accelerate the photo-induced electron transfer from Ru(bpy)3Cl2 to the cobalt-porphyrin under the external light. Thus, the cobalt-porphyrin active sites have a longer excited-state lifetime to lower the rate-determining steps' energy occurring during the actual photo-coupled electrocatalytic CO2RR process. This is the first work of porphyrin-based COFs for photo-coupled CO2RR, opening a new frontier for the construction of efficient photo-coupled electrocatalysts.

2.
Angew Chem Int Ed Engl ; 62(36): e202306822, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37468435

RESUMO

We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu-S2 N1 active sites (named Cu6 (MBD)6 , MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu-S3 sites, the Cu6 (MBD)6 with Cu-S2 N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at -1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2 H4 ), with the hydrocarbons partial current density of -183.4 mA cm-2 . Theoretical calculations reveal that the symmetry-broken Cu-S2 N1 sites can rearrange the Cu 3d orbitals with d x 2 - y 2 ${d_{x^2 - y^2 } }$ as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C-C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2 RR towards highly-valued products.

3.
ACS Appl Mater Interfaces ; 15(30): 36334-36343, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37475107

RESUMO

Halogenated organic compounds are a kind of common environmental pollutants. Photocatalytic dehalogenation of C-halogen (C-X) bonds to C-H bonds can not only control environmental pollution but also realize important organic conversion reactions. However, the electron transfer kinetics of photocatalytic reduction of the C-X bond for semiconductor/MOF composites has remained unexplored. Herein, we successfully synthesized CdS/Zn(impim) (MOF) dots-on-rods composite photocatalyst under mild conditions. Zn(impim) MOF consists of Zn(µ-N)4 clusters and imidazole derivative ligands. Zn(impim), as a carrier, is beneficial to the dispersion of CdS nanoparticles and avoiding the agglomeration of CdS nanoparticles. The photocatalytic performance of CdS/Zn(impim) composites for the reduction of the C-X bond is much higher than that of pure CdS or Zn(impim). This high activity is due to the high electron separation efficiency of CdS assisted by Zn(impim). Under visible light irradiation, Zn(impim) is not excited due to its wide band gap of 3.26 eV. Through metal-to-ligand charge transfer of Zn(µ-N)4 clusters, Zn(impim) accepts excited electrons from CdS because the Fermi energy level of CdS is more negative by Kelvin probe force microscopy. Moreover, fluorescence spectrum and femtosecond transient absorption spectroscopy reveal the related electron transfer kinetics in detail. In addition, the inherent porous structure of MOFs is beneficial to the adsorption of halogenated hydrocarbons, providing a suitable environment for the dehalogenation reaction, thus improving the activity. This work can further understand the electron transfer mechanism in semiconductor/MOF composites for photocatalytic halide dehalogenation.

4.
Exp Ther Med ; 22(5): 1205, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34584550

RESUMO

Previous studies have reported that the expression levels of microRNA (miR)-28-3p are downregulated in prostate cancer (PCa) compared with those in adjacent normal tissues. However, to the best of our knowledge, the function and underlying mechanisms of miR-28-3p in PCa have not been reported. The present study aimed to explore the role of miR-28-3p and its mechanism in the development of PCa. In the present study, miR-28-3p and ADP-ribosylation factor 6 (ARF6) expression levels were analyzed using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation, colony formation, apoptosis, migration and invasion were determined using Cell Counting Kit-8, colony forming, flow cytometry and Transwell assays, respectively. The association between miR-28-3p and ARF6 was investigated using a dual luciferase reporter assay. ARF6, Rac1, Erk1/2 and phosphorylated (p)-Erk1/2 protein expression levels were analyzed using western blotting. The results of the present study revealed that miR-28-3p expression levels were downregulated, whereas ARF6 expression levels were upregulated in PCa cell lines (LNCaP, 22Rv-1, PC-3 and DU145) compared with those in the normal prostate line RWPE-1. The overexpression of miR-28-3p promoted cell apoptosis, and inhibited cell proliferation, colony formation, migration and invasion. However, the knockdown of miR-28-3p exerted the opposite results. The results of the dual luciferase reporter assays, RT-qPCR and western blotting indicated that ARF6 was a target gene of miR-28-3p. Finally, rescue experiments demonstrated that ARF6 overexpression attenuated the effects of the miR-28-3p mimic by upregulating Rac1 and p-Erk1/2 expression in PCa cells. In conclusion, these findings indicated that miR-28-3p may inhibit the biological behaviors of PCa cells by targeting ARF6, and therefore may represent a novel therapeutic candidate for PCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA