Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 17(11): e3000558, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31693658

RESUMO

[This corrects the article DOI: 10.1371/journal.pbio.1002580.].

2.
PLoS Biol ; 14(11): e1002580, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27855162

RESUMO

The extracellular matrix (ECM) provides physical scaffolding for cellular constituents and initiates biochemical and biomechanical cues that are required for physiological activity of living tissues. The ECM enzyme ADAMTS5, a member of the ADAMTS (A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs) protein family, cleaves large proteoglycans such as aggrecan, leading to the destruction of cartilage and osteoarthritis. However, its contribution to viral pathogenesis and immunity is currently undefined. Here, we use a combination of in vitro and in vivo models to show that ADAMTS5 enzymatic activity plays a key role in the development of influenza-specific immunity. Influenza virus infection of Adamts5-/- mice resulted in delayed virus clearance, compromised T cell migration and immunity and accumulation of versican, an ADAMTS5 proteoglycan substrate. Our research emphasises the importance of ADAMTS5 expression in the control of influenza virus infection and highlights the potential for development of ADAMTS5-based therapeutic strategies to reduce morbidity and mortality.


Assuntos
Proteína ADAMTS5/fisiologia , Imunidade Celular/fisiologia , Orthomyxoviridae/imunologia , Linfócitos T/imunologia , Proteína ADAMTS5/genética , Animais , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Versicanas/metabolismo , Redução de Peso
3.
J Virol ; 89(5): 2672-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520513

RESUMO

UNLABELLED: Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species. IMPORTANCE: Highly pathogenic avian influenza virus infection causes severe morbidity and mortality in both humans and poultry. Wide-spread antiviral resistance necessitates the need for the development of additional novel therapeutic measures to modulate overactive host immune responses after infection. Disease severity following avian influenza virus infection can be attributed in part to hyperinduction of inflammatory mediators such as cytokines, chemokines, and reactive oxygen species. Our study shows that highly pathogenic avian influenza H5N1 virus and low-pathogenicity avian influenza H7N9 virus (both associated with human fatalities) promote inactivation of FoxO3 and downregulation of the TAM receptor tyrosine kinase, Tyro3, leading to augmentation of the inflammatory cytokine response. Inhibition of influenza-induced reactive oxygen species with apocynin activated FoxO3 and stimulated SOCS1 and SOCS3 proteins, restoring cytokine homeostasis. We conclude that modulation of host immune responses with antioxidant and/or anti-inflammatory agents in combination with antiviral therapy may have important therapeutic benefits.


Assuntos
Vírus da Influenza A/imunologia , Espécies Reativas de Oxigênio/toxicidade , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Acetofenonas/metabolismo , Animais , Antioxidantes/metabolismo , Linhagem Celular , Galinhas , Citocinas/biossíntese , Patos , Perfilação da Expressão Gênica , Humanos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas
4.
J Biol Chem ; 289(1): 152-62, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24247241

RESUMO

Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8(+) T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apresentação de Antígeno , Proteínas de Bactérias/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pseudomonas aeruginosa/metabolismo , Ubiquitinação , Fatores de Virulência/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/imunologia , Ubiquitina Tiolesterase/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia
5.
J Gen Virol ; 95(Pt 9): 1880-1885, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24876306

RESUMO

Difficulties associated with efficient delivery and targeting of miRNAs to cells is hampering the real world application of miRNA technology. This study utilized an influenza A-based delivery system to express miR-155 in order to knockdown SOCS1 mRNA. Using qPCR and dual luciferase technology we show that miR-155 delivery resulted in a significant increase in cellular miR-155 which facilitated a downregulation of SOCS1 gene expression and a functional increase in IL-6 and IFN-ß cytokines.


Assuntos
Técnicas de Transferência de Genes , Vírus da Influenza A/genética , MicroRNAs/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cães , Técnicas de Silenciamento de Genes , Vetores Genéticos , Interferon beta/biossíntese , Interleucina-6/biossíntese , Células Madin Darby de Rim Canino , Camundongos , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Células Vero
6.
Expert Rev Mol Med ; 16: e2, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24528628

RESUMO

Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate 'designer' influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host-pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host-pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.


Assuntos
Vírus da Influenza A/genética , Influenza Humana/virologia , Antivirais/farmacologia , Farmacorresistência Viral , Especificidade de Hospedeiro , Humanos , Imunidade Celular , Imunidade Inata , Vírus da Influenza A/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Linfócitos/imunologia , Linfócitos/virologia , Genética Reversa
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124236, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615415

RESUMO

In this work, a colorimetric aptasensor based on magnetic beads (MBs), gold nanoparticles (AuNPs) and Horseradish Peroxidase (HRP) was prepared for the detection of mucin 1 (MUC1). Complementary DNA of the MUC1 aptamer (Apt) immobilized on the MBs was combined with the prepared AuNPs-Apt-HRP complex (AuNPs@Apt-HRP). In the presence of MUC1, it specifically bound to Apt, resulting in the detachment of gold nanoparticles from the MBs. After magnetic separation, AuNPs@Apt-HRP was separated into the supernatant and reacted with 3,3',5,5'-Tetramethylbenzidine (TMB) to produce color reaction from colorless to blue. The linear range of MUC1 was from 75 to 500 µg/mL (R2 = 0.9878), and the detection limit was 41.95 µg/mL. The recovery rate of MUC1 in human serum was 99.18 %∼101.15 %. This method is simple and convenient. Moreover, it does not require complex and expensive equipment for detection of MUC1. It provides value for the development of MUC1 colorimetric sensors and a promising strategy for the determination of MUC1 in clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Benzidinas , Técnicas Biossensoriais , Colorimetria , Ouro , Limite de Detecção , Nanopartículas Metálicas , Mucina-1 , Mucina-1/análise , Mucina-1/sangue , Colorimetria/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Humanos , Técnicas Biossensoriais/métodos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo
8.
J Cell Physiol ; 228(4): 773-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23001823

RESUMO

We used vertical growth phase (VGP) human VMM5 melanoma cells to ask whether the tumor microenvironment could induce matrix metalloproteinase-1 (MMP-1) in vivo, and whether this induction correlated with metastasis. We isolated two clones from parental VMM5 cells: a low MMP-1 producing clone (C4) and high producing clone (C9). When these clones were injected orthotopically (intradermally) into nude mice, both were equally tumorigenic and produced equivalent and abundant amounts of MMP-1. However, the tumors from the C4 clones displayed different growth kinetics and distinct profiles of gene expression from the C9 population. The C4 tumors, which had low MMP-1 levels in vitro, appeared to rely on growth factors and cytokines in the microenvironment to increase MMP-1 expression in vivo, while MMP-1 levels remained constant in the C9 tumors. C9 cells, but not C4 cells, grew as spheres in culture and expressed higher levels of JARID 1B, a marker associated with melanoma initiating cells. We conclude that VMM5 melanoma cells exhibit striking intra-tumor heterogeneity, and that the tumorigenicity of these clones is driven by different molecular pathways. Our data suggest that there are multiple mechanisms for melanoma progression within a tumor, which may require different therapeutic strategies.


Assuntos
Melanoma/patologia , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Animais , Células Clonais , Citocinas/metabolismo , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , Células Tumorais Cultivadas , Microambiente Tumoral/genética
9.
PLoS Pathog ; 7(3): e1001325, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21455491

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB), USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Imunidade Inata , Pneumopatias/metabolismo , Pseudomonas aeruginosa/fisiologia , Ubiquitina/metabolismo , Fatores de Virulência/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Hospedeiro Imunocomprometido , Pneumopatias/imunologia , Pneumopatias/microbiologia , Peptídeo Hidrolases , Pseudomonas aeruginosa/patogenicidade
10.
Int J Biol Macromol ; 231: 123524, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736981

RESUMO

Agar was modified with glutaric anhydride (GA) in this study to expand its application in food and medicine. Glutaric anhydride-modified agar (GAR) can maintain high gel strength (1247.4 g/cm2) and improved transparency (82.7 %). The esterified agar formed by GA further formed a cross-linking molecule structure by increasing the reaction temperature. Notably, excellent freeze-thaw stability (24.1 %) and swelling property (3116.6 %) of GAR indicated that the carboxyl-terminal of modified agar improves its affinity with water. Therefore, satisfactory water permeability and expansive stone enable agar films to achieve high water absorption. Furthermore, GAR films exhibit a specific absorption capacity of tetracycline hydrochloride in weak acid solution, thereby suggesting its potential application as a sustainable drug delivery carrier. Finally, the structure of the modified agar was analyzed to explain the mechanism of binding water. Cryo-scanning electron microscopy (SEM) depicted the porous structure of the agar gel responsible for swelling, drug loading, and release. Low-field NMR results showed that GA improves agar gel's binding and free water content. According to our research results, these GAR hydrogel membranes with excellent properties have the potential to be used as effective drug delivery materials.


Assuntos
Materiais Biocompatíveis , Portadores de Fármacos , Ágar/química , Fenômenos Químicos , Portadores de Fármacos/química , Água/química
11.
J Oral Microbiol ; 15(1): 2277271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928602

RESUMO

Background: Despite poor oral hygiene, the Baiku Yao (BKY) ethnic group in China presents a low prevalence of dental caries, which may be related to genetic susceptibility. Due to strict intra-ethnic marriage rule, this ethnic has an advantage in studying the interaction between genetic factors and other regulatory factors related to dental caries. Methods: Peripheral blood from a caries-free adult male was used for whole genome sequencing, and the BKY assembled genome was compared to the Han Chinese genome. Oral saliva samples were collected from 51 subjects for metabolomic and metagenomic analysis. Multiomics data were integrated for combined analysis using bioinformatics approaches. Results: Comparative genomic analysis revealed the presence of structural variations in several genes associated with dental caries. Metabolomic and metagenomic sequencing demonstrated the caries-free group had significantly higher concentration of antimicrobials and higher abundance of core oral health-related microbiota. The functional analysis indicated that cationic antimicrobial peptide resistance and the lipopolysaccharide biosynthesis pathway were enriched in the caries-free group. Conclusions: Our study provided new insights into the specific regulatory mechanisms that contribute to the low prevalence of dental caries in the specific population and may provide new evidence for the genetic diagnosis and control of dental caries.

12.
Hortic Res ; 10(11): uhad200, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023477

RESUMO

Cassava is a crucial crop that makes a significant contribution to ensuring human food security. However, high-quality telomere-to-telomere cassava genomes have not been available up to now, which has restricted the progress of haploid molecular breeding for cassava. In this study, we constructed two nearly complete haploid resolved genomes and an integrated, telomere-to-telomere gap-free reference genome of an excellent cassava variety, 'Xinxuan 048', thereby providing a new high-quality genomic resource. Furthermore, the evolutionary history of several species within the Euphorbiaceae family was revealed. Through comparative analysis of haploid genomes, it was found that two haploid genomes had extensive differences in linear structure, transcriptome features, and epigenetic characteristics. Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway. The high heterozygosity of cassava 'Xinxuan 048' leads to rapid trait segregation in the first selfed generation. This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.

13.
Food Chem ; 381: 132164, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101707

RESUMO

Chemical modification is often used to improve the gel properties of agar but inevitably weakens gel strength in practical applications. This study achieved a breakthrough in improving the gel properties of agar without reducing its gel strength through modification with succinic anhydride. Fourier transform infrared spectroscopy and carbon nuclear magnetic resonance analyses showed that succinic anhydride could be mono-succinylated, cross-linked, and desulfurized with agar. The transition from mono-succinylation to cross-linking of agar was achieved by attemperation. Interestingly, the gel transparency of mono-succinylated agar increased from 55% to 89%, but its gel strength remarkably decreased from 1073 g/cm2 to 188 g/cm2. Cross-linking endowed agar with a higher gel strength (815 g/cm2) and gel transparency (85.3%). Agar succinylation demonstrated more beneficial effects and further enhanced the water-retention capacity of agar powder (18.1 g/g), the swelling ratio of agar film (1736.2%), and the freeze-thaw stability of agar gel (30.3%, 7th).


Assuntos
Anidridos Succínicos , Ágar/química , Espectroscopia de Infravermelho com Transformada de Fourier , Anidridos Succínicos/química
14.
Int J Biol Macromol ; 201: 364-377, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998880

RESUMO

Agar is modified by chemical methods to improve its functional properties and meet the increasing demand of the market. Some of the functional properties of agar are improved after chemical modification, while other properties are reduced, especially gel strength. This study aimed to comprehensively improve the functional properties of agar through acylation and crosslinking by reacting with maleic anhydride. 13C NMR indicated the maleylation reaction was preferred at the C2 hydroxyl group of D-galactose, and the crosslinking reactions occurred at the C2 and C6 hydroxyl groups of D-galactose in different agar chains. Interestingly, the maleylated agar monoester had higher gel transparency (1.5%, w/v) of up to 76% than the native agar (58%). However, it showed a significant decrease in gel strength from 783 g/cm2 to 403 g/cm2, while crosslinking endowed agar with higher gel strength (845 g/cm2) and gel transparency (78.4%). The high transparency of the modified agar plate made colony observation and colony counting easy. Maleylation of agar further enhanced the freeze-thaw stability of agar gel (24.8%, 7th freeze-thaw cycles). Overall, the maleylated agar possessed superior functional properties, and it could be used as food, bacteriological, and biotechnological agar.


Assuntos
Galactose , Anidridos Maleicos , Acilação , Ágar/química , Fenômenos Químicos , Anidridos Maleicos/química
15.
Anal Methods ; 15(1): 99-108, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484245

RESUMO

Aflatoxin B1 (AFB1) is a highly toxic mycotoxin, which causes severe acute or cumulative poisoning. Therefore, it is important to develop sensitive and selective detection methods for AFB1 for the safety of food and medicinal herbs. Herein, we have developed a "signal-on" electrochemical aptasensor based on the high specificity of the aptamer and hybridization chain reaction (HCR) biological amplification for AFB1 detection. In this work, thiol-modified complementary DNA (cDNA) immobilized on the surface of a gold electrode (GE) served as an initiator DNA. When AFB1 was present, it competed with the cDNA for binding to the aptamers, which resulted in the detaching of aptamers from the cDNA-aptamer duplexes. Then, the single-stranded cDNA acted as an initiator to trigger the HCR signal amplification. Therefore, long double-stranded DNA (dsDNA) products were produced, which could load large amounts of methylene blue (MB) molecules to generate a distinct electrochemical signal. Under the optimized conditions, the proposed electrochemical aptasensor achieved the ultrasensitive detection of AFB1 with a linear detection range of 0.01-100 pg mL-1, and a limit of detection (LOD) down to 2.84 fg mL-1. Furthermore, the electrochemical aptasensor was successfully applied for detecting AFB1 in corn and two kinds of traditional Chinese medicine samples, indicating the potential value for AFB1 detection in practical samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Complementar/química , Aflatoxina B1/análise , Aflatoxina B1/química , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Técnicas Eletroquímicas/métodos , DNA/química , Técnicas Biossensoriais/métodos
16.
J Biol Chem ; 285(35): 27008-27018, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20525683

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl(-) currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endocitose/fisiologia , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Mucosa Respiratória/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Lisossomos/genética , Mutação , Proteínas Proto-Oncogênicas c-cbl/genética
17.
PLoS Pathog ; 5(4): e1000382, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360133

RESUMO

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane-derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including beta-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP-mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Vesículas Transportadoras/metabolismo , Fatores de Virulência/metabolismo , Actinas , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Imunoprecipitação , Pulmão/metabolismo , Pulmão/microbiologia , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Mucosa/metabolismo , Mucosa/microbiologia , Vesículas Transportadoras/microbiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
18.
Front Mol Biosci ; 8: 703868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527702

RESUMO

Remodelling of the extracellular matrix (ECM) by ECM metalloproteinases is increasingly being associated with regulation of immune cell function. ECM metalloproteinases, including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs) and ADAMs with Thombospondin-1 motifs (ADAMTS) play a vital role in pathogen defence and have been shown to influence migration of immune cells. This review provides a current summary of the role of ECM enzymes in immune cell migration and function and discusses opportunities and limitations for development of diagnostic and therapeutic strategies targeting metalloproteinase expression and activity in the context of infectious disease.

19.
Mol Pharmacol ; 78(4): 600-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20628006

RESUMO

Inhibitors of insulin-regulated aminopeptidase (IRAP) improve memory and are being developed as a novel treatment for memory loss. In this study, the binding of a class of these inhibitors to human IRAP was investigated using molecular docking and site-directed mutagenesis. Four benzopyran-based IRAP inhibitors with different affinities were docked into a homology model of the catalytic site of IRAP. Two 4-pyridinyl derivatives orient with the benzopyran oxygen interacting with the Zn(2+) ion and a direct parallel ring-stack interaction between the benzopyran rings and Phe544. In contrast, the two 4-quinolinyl derivatives orient in a different manner, interacting with the Zn(2+) ion via the quinoline nitrogen, and Phe544 contributes an edge-face hydrophobic stacking point with the benzopyran moiety. Mutagenic replacement of Phe544 with alanine, isoleucine, or valine resulted in either complete loss of catalytic activity or altered hydrolysis velocity that was substrate-dependent. Phe544 is also important for inhibitor binding, because these mutations altered the K(i) in some cases, and docking of the inhibitors into the corresponding Phe544 mutant models revealed how the interaction might be disturbed. These findings demonstrate a key role of Phe544 in the binding of the benzopyran IRAP inhibitors and for optimal positioning of enzyme substrates during catalysis.


Assuntos
Benzopiranos/metabolismo , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Fenilalanina/fisiologia , Benzopiranos/química , Benzopiranos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/fisiologia , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fenilalanina/química , Especificidade por Substrato/fisiologia
20.
J Vet Diagn Invest ; 32(4): 577-580, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32450762

RESUMO

Rift Valley fever virus (RVFV) causes Rift Valley fever (RVF), resulting in morbidity and mortality in humans and ruminants. Evidence of transboundary outbreaks means that RVFV remains a threat to human health and livestock industries in countries that are free from the disease. To enhance surveillance capability, methods for detection of RVFV are required. The generation of reagents suitable for the detection of RVFV antigen in formalin-fixed, paraffin-embedded tissues from infected animals have been developed and are described herein. Recombinant nucleoprotein (rNP) was expressed in Escherichia coli and purified using immobilized metal ion affinity chromatography. Purified rNP was used as an immunogen to produce anti-NP polyclonal antisera in rabbits for use in detection of RVFV NP in experimentally infected animals by immunohistochemistry. Antisera raised in rabbits against rNP were able to recognize viral NP antigen in fixed infected Vero cell pellets and sheep liver. Therefore, the methods and reagents described herein are useful in assays for detection of RVFV infections in animals, for research and surveillance purposes.


Assuntos
Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/isolamento & purificação , Doenças dos Ovinos/diagnóstico , Animais , Indicadores e Reagentes/química , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA