Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 804-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191935

RESUMO

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Assuntos
Neuroimagem , Software , Neuroimagem/métodos , Humanos , Interface Usuário-Computador , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
2.
Chemosphere ; 364: 143138, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168379

RESUMO

Electrochemically activated persulfate is a potential advanced oxidation process due to its advantages of environmental friendliness, high efficiency, and convenient operation. An Fe-Cu-S granular activated carbon (CuFeS2/GAC, abbreviated as FCSG) particles electrode was developed and applied to degrade carbamazepine (CBZ) combined with electrochemical activation of persulfate (E-PDS-FCSG) in this work. Compared to two-dimensional electrochemical process (E-PDS), the three-dimensional (3D) E-PDS-FCSG process exhibited higher removal efficiency of CBZ and lower energy consumption. The removal efficiency of CBZ and power consumption increased by 96% and reduced by 67%, respectively. Over 98% of CBZ removal rate was reached within 25 min. Apart from the same free radicals in two-dimensional electrochemical process, both Fe2+ and Cu+ on the surface of three-dimensional particle electrodes can directly activate PDS to produce SO4•-, and the existence of S2- strengthens the circulation of Fe3+/Fe2+ and Cu2+/Cu+. Furthermore, FCSG particle electrode can not only directly enhance the activation of PDS, but also accelerate the electron transfer, and then effectively promoting reactive species generation. LC-MS analysis showed that the main degradation pathways of CBZ involved decarbonylation, deamination, dealkylation, ring opening and mineralization. Moreover, after five cycle experiments, over 80% of CBZ removal rate could be achieved, demonstrating that the E-PDS-FCSG system had excellent electrocatalytic performance and good stability. These findings indicate that FCSG is a promising material and could be used as a particle electrode for removing organic pollutants from water.

3.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993557

RESUMO

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.

4.
Chemosphere ; 309(Pt 1): 136695, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202377

RESUMO

Electrochemically activated peroxymonosulfate with mixed metal oxide electrodes (EA-PMS-MMO/MMO) is an emerging advanced oxidation process. It performed well on the degradation of sulfadiazine (SDZ), whose removal rate reached 81.13% within 30 min. Both the MMO anode and cathode played an irreplaceable role in PMS activation. HO•, SO4•-, O2•- and 1O2 were confirmed to be the major reactive species in the system, among which 1O2 was the most abundant. The generation mechanism of the reactive species and the overall mechanism of the system were proposed. Four degradation pathways of SDZ were speculated based on density functional theory. The acute and chronic toxicity of SDZ and its degradation intermediates was evaluated by the quantitative structure-activity relationship method, and the overall toxicity was significantly reduced after the degradation by EA-PMS-MMO/MMO. The results show that EA-PMS-MMO/MMO affords a reliable technology for the degradation of organic contaminants and has promising potential for application.


Assuntos
Peróxidos , Sulfadiazina , Eletrodos , Óxidos/toxicidade , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA