Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Res ; 252(Pt 3): 119052, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697596

RESUMO

Biochar has emerged as a versatile and efficient multi-functional material, serving as both an adsorbent and catalyst in removing emerging pollutants (EPs) from aquatic matrices. However, pristine biochar's catalytic and adsorption capabilities are hindered by its poor surface functionality and small pore size. Addressing these limitations involves the development of functionalized biochar, a strategic approach aimed at enhancing its physicochemical properties and improving adsorption and catalytic efficiencies. Despite a growing interest in this field, there is a notable gap in existing literature, with no review explicitly concentrating on the efficacy of biochar-based functional materials (BCFMs) for removing EPs in aquatic environments. This comprehensive review aims to fill this void by delving into the engineering considerations essential for designing BCFMs with enhanced physiochemical properties. The focus extends to understanding the treatment efficiency of EPs through mechanisms such as adsorption or catalytic degradation. The review systematically outlines the underlying mechanisms involved in the adsorption and catalytic degradation of EPs by BCFMs. By shedding light on the prospects of BCFMs as a promising multi-functional material, the review underscores the imperative for sustained research efforts. It emphasizes the need for continued exploration into the practical implications of BCFMs, especially under environmentally relevant pollutant concentrations. This holistic approach seeks to contribute to advancing knowledge and applying biochar-based solutions in addressing the challenges posed by emerging pollutants in aquatic ecosystems.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Carvão Vegetal/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Adsorção , Catálise
2.
Bioprocess Biosyst Eng ; 47(6): 943-955, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703203

RESUMO

At present, the application of sewage treatment technologies is restricted by high sulfate concentrations. In the present work, the sulfate removal was biologically treated using an upflow anaerobic sludge blanket (UASB) in the absence/presence of light. First, the start-up of UASB for the sulfate removal was studied in terms of COD degradation, sulfate removal, and effluent pH. Second, the impacts of different operation parameters (i.e., COD/SO42- ratio, temperature and illumination time) on the UASB performance were explored. Third, the properties of sludge derived from the UASB at different time were analyzed. Results show that after 28 days of start-up, the COD removal efficiencies in both the photoreactor and non-photoreactor could reach a range of 85-90% while such reactors could achieve > 90% of sulfate being removed. Besides, higher illumination time could facilitate the removal of pollutants in the photoreactor. To sum up, the present study can provide technical support for the clean removal of sulfate from wastewater using photoreactors.


Assuntos
Luz , Esgotos , Sulfatos , Sulfatos/química , Esgotos/microbiologia , Reatores Biológicos , Anaerobiose , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Environ Res ; 231(Pt 3): 116306, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268202

RESUMO

Passivation of heavy metals is one of the most efficient techniques to improve the quality of compost. Many studies confirmed the passivation effect of passivators (e.g., zeolite and calcium magnesium phosphate fertilizer) on cadmium (Cd), but passivators with single component could not effectively passivate Cd in the long-term operation of composting. In the present study, a combined passivator of zeolite and calcium magnesium phosphate fertilizer (ZCP) was used to explore its impacts of adding at different composting periods (heating period, thermophilic period, cooling period) on the Cd control, compost quality (e.g., temperature, moisture content and humification), microbial community structure as well as the compost available forms of Cd and addition strategy of ZCP. Results showed that Cd passivation rate could be increased by 35.70-47.92% under all treatments in comparison to the control treatment. By altering bacterial community structure, reducing Cd bioavailability and improving the chemical properties of the compost, the combined inorganic passivator could achieve high efficiency for Cd passivation. To sum up, the addition of ZCP at different composting periods has effects on the process and quality of composting, which could provide ideas for the optimization of the passivators addition strategy.


Assuntos
Compostagem , Metais Pesados , Zeolitas , Cádmio , Compostagem/métodos , Fertilizantes , Solo/química , Metais Pesados/análise , Esterco
4.
Environ Res ; 235: 116684, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459946

RESUMO

Co-gasification technology is considered to be one of the most potential technologies for solid waste treatment, and the co-gasification treatment of rural solid waste (RSW) and biomass can effectively promote waste reduction and resource utilization. In the present study, the co-gasification of RSW and biomass in an updraft fixed bed gasifier was simulated using the Aspen Plus software, where the simulation results were validated via plant-scale experiments. In this scenario, the impacts of biomass source (i.e., rice husk, rice straw, tree bark and corn straw), co-gasification ratio (CGR) (0-40%) and air equivalence ratio (AER) (0.30-0.55) on the performance of the fixed-bed were investigated. Results showed that Aspen Plus could describe the plant-scale co-gasification process well. Besides, the tree bark-RSW system had the highest heat conversion efficiency of 6.00 MJ/kg the simulation temperature of the gasification layer increased greatly from 485 to 913 °C when the AER increased from 0.40 to 0.55. In addition, the co-gasification of RSW and tree bark could achieve the highest efficiency at the AER of 0.45 and CGR of 20% w, in which the gasification temperature reached 799 °C with the gasification efficiency of 57.17%. This study explored the use of co-gasification of RSW and biomass in rural areas by simulation and plant-scale processes, which promotes the commercial application of co-gasification technology and contributes to sustainable waste management in rural areas.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Gases , Biomassa , Eliminação de Resíduos/métodos , Temperatura Alta
5.
J Environ Manage ; 206: 929-937, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29220819

RESUMO

A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO3-, SO42-, Cl- and NO3-), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material.


Assuntos
Fluoretos/isolamento & purificação , Óxido de Magnésio , Purificação da Água , Adsorção , Fluoretos/química , Glucanos , Água , Poluentes Químicos da Água
6.
Bioresour Technol ; 406: 131022, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914234

RESUMO

Membrane bioreactors (MBRs) hold significant promise for wastewater treatment, yet the persistent challenge of membrane fouling impedes their practical application. One promising solution lies in the synergy between microalgae and bacteria, offering efficient nutrient removal, reduced energy consumption, and potential mitigation of extracellular polymeric substances (EPS) concentrations. Inoculating microalgae presents a promising avenue to address membrane fouling in MBRs. This review marks the first exploration of utilizing microalgae for membrane fouling control in MBR systems. The review begins with a comprehensive overview of the evolution and distinctive traits of microalgae-MBRs. It goes further insight into the performance and underlying mechanisms facilitating the reduction of membrane fouling through microalgae intervention. Moreover, the review not only identifies the challenges inherent in employing microalgae for membrane fouling control in MBRs but also illuminates prospective pathways for future advancement in this burgeoning field.

7.
Sci Total Environ ; 935: 172863, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788387

RESUMO

In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.


Assuntos
Biocombustíveis , Biomassa
8.
Sci Total Environ ; 872: 162211, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791849

RESUMO

Biological assimilation that recovery the nitrogen from wastewater in the form of biomass offers a more environmentally friendly solution for the limitations of the conventional wastewater treatments. This study reported the simultaneous removal and recovery of nitrogen from wastewater without N2O emission by a heterotrophic nitrogen-assimilating Acinetobacter sp. DN1 strain. Nitrogen balance, biomass qualitative analysis, genome and enzyme studies have been performed to illustrate the mechanism of nitrogen conversion by strain DN1. Results showed that the ammonium removal followed one direct pathway (GOGAT/GDH) and three indirect pathways (NH4+ → NH2OH → NO → NO2- → NH4+ → GOGAT/GDH; NH4+ → NH2OH → NO → NO2- → NO3- → NO2- → NH4+ → GOGAT/GDH; NH4+ → NH2OH → NO → NO3- → NO2- → NH4+ → GOGAT/GDH). Nitrogen balance and biomass qualitative analysis showed that over 70 % of the ammonium in the wastewater was converted into intracellular nitrogen-containing compounds and stored in the cells of strain DN1. Traditional denitrification pathway was not detected and the ammonium was removed through assimilation, which makes it more energy-saving for nitrogen recovery when compared with Haber-Bosch process. This study provides a new direction for simultaneous nitrogen removal and recovery without N2O emission by the heterotrophic nitrogen-assimilating bacterium.


Assuntos
Compostos de Amônio , Águas Residuárias , Desnitrificação , Nitrificação , Nitrogênio/metabolismo , Dióxido de Nitrogênio , Processos Heterotróficos , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Aerobiose , Nitritos/metabolismo
9.
Chemosphere ; 329: 138653, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044139

RESUMO

Anaerobic co-digestion of deoiled food waste (dFW) and waste activated sludge (WAS) can address the challenges derived from mono-digestion of FW. In the present study, a pilot-scale methanogenic bioreactor of a two-phase anaerobic digestion system was developed to explore the impact of dFW/WAS volatile solids ratios on the overall performance, microbial community, and metabolic pathways. Besides, the tech-economic of the system was analyzed. The results showed that the degradation efficiency of soluble chemical oxygen demand (SCOD) was more than 84.90% for all the dFW/WAS ratios (v/v) (1:0, 39:1, 29:1, 19:1 and 9:1). Moreover, the dominant genus of bacteria and archaea with different ratios were Lactobacillus (66.84-98.44%) and Methanosaeta (53.66-80.09%), respectively. Co-digestion of dFW and WAS (29: 1 in v/v ratios) obtained the highest yield of methane (0.41 L CH4/Ladded) with approximately 90% of SCOD being removed. In the pilot-scale experiment, the co-digestion of FW and WAS makes positive contribution to reusing solid waste for improving solid management.


Assuntos
Alimentos , Eliminação de Resíduos , Esgotos/microbiologia , Anaerobiose , Archaea , Reatores Biológicos , Metano
10.
Front Chem ; 10: 922701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711961

RESUMO

Dye wastewater has attracted more and more attention because of its high environmental risk. In this study, a novel TiO2 nanotube (TNT) catalyst was prepared and its morphology and structure were characterized. The synthetic catalyst was used to degrade Rhodamine B (RhB) under UV light and evaluated for the application performance. According to the characterization results and degradation properties, the optimum synthetic conditions were selected as 400°C calcination temperature and 10 wt% Pt deposition. As a result, the degradation efficacies were sequenced as TNT-400-Pt > TNT-500-Pt > TNT-400 > TNT-300-Pt. In addition, the effect of pH and initial concentration of RhB were explored, and their values were both increased with the decreased degradation efficacy. While the moderate volume of 11 mm of H2O2 addition owned better performance than that of 0, 6, and 15 mm. Scavengers such as tertbutanol (t-BuOH), disodium ethylenediaminetetraacetate (EDTA-Na2), and nitroblue tetrazolium (NBT) were added during the catalytic process and it proved that superoxide radical anions ( O 2 - • ) , photogenerated hole (h+) and hydroxyl radical (OH•) were the main active species contributing for RhB removal. For the application, TNT-Pt could deal with almost 100% RhB, Orange G (OG), Methylene blue (MB), and Congo red (CR) within 70 min and still kept more than 50% RhB removal in the fifth recycling use. Therefore, TNT-Pt synthesized in this study is potential to be applied to the dye wastewater treatment.

11.
Chemosphere ; 289: 133175, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34875297

RESUMO

Wastewater contains a significant amount of recoverable nitrogen. Hence, the recovery of nitrogen from wastewater can provide an option for generating some revenue by applying the captured nitrogen to producing bio-products, in order to minimize dangerous or environmental pollution consequences. The circular bio-economy can achieve greater environmental and economic sustainability through game-changing technological developments that will improve municipal wastewater management, where simultaneous nitrogen and energy recovery are required. Over the last decade, substantial efforts were undertaken concerning the recovery of nitrogen from wastewater. For example, bio-membrane integrated system (BMIS) which integrates biological process and membrane technology, has attracted considerable attention for recovering nitrogen from wastewater. In this review, current research on nitrogen recovery using the BMIS are compiled whilst the technologies are compared regarding their energy requirement, efficiencies, advantages and disadvantages. Moreover, the bio-products achieved in the nitrogen recovery system processes are summarized in this paper, and the directions for future research are suggested. Future research should consider the quality of recovered nitrogenous products, long-term performance of BMIS and economic feasibility of large-scale reactors. Nitrogen recovery should be addressed under the framework of a circular bio-economy.


Assuntos
Nitrogênio , Águas Residuárias , Nitrogênio/análise
12.
Chemosphere ; 291(Pt 2): 132883, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780746

RESUMO

This study describes the photodegradation of chloramphenicol (CAP) in micro-polluted water with a thin-layer inclined plate reactor. Under simulated sunlight irradiation, the effect of reaction parameters including solution pH, initial CAP concentration, and co-existed humic acid (HA) or chloride was evaluated. The photodegradation of CAP was independent of initial pH in the range of 6.0-9.0, but sharply decreased by 25.5% with the increase of initial CAP concentration from 0.4 to 1.0 mg/L. The presence of HA exhibited a significant inhibitory effect, while Cl- promoted the photoreaction. In this study, CAP was degraded through both direct and indirect photolysis, in which 1O2 was the main reactive species responsible for the indirect route. Its steady-state concentration in the micro-polluted water was determined to be 1.40 × 10-13 mol/L. Transformation intermediates were identified to propose the degradation pathway of CAP, which substantially met the density functional theory (DFT) calculation results. Moreover, four other pharmaceuticals including tetracycline, doxycycline, oxytetracycline, and minocycline were also successfully photodegraded during 5 h irradiation. Therefore, the designed circulatory thin-layer inclined plate reactor is suggested to be effectively applied to the decontamination of organic micro-polluted water.


Assuntos
Cloranfenicol , Poluentes Químicos da Água , Substâncias Húmicas/análise , Cinética , Fotólise , Água , Poluentes Químicos da Água/análise
13.
Bioresour Technol ; 362: 127799, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007763

RESUMO

This paper is to explore the use of rural solid waste (RSW) for pyrolysis-gasification-combustion in pilot plant scale aiming at sustainable management of rural waste in remote areas. Based on the experimental data obtained during pilot scale operation, the temperature in the furnace needs to be kept at least at 600 °C through analyzing the pyrolysis weight loss of the main combustibles in the RSW. Besides, the effects of the air supply method and ventilation rate on the pilot plant performance were explored. Results indicate that the active air supply method positively contributes to the performance of the pilot plant. The plant processed 10 t RSW/d, producing 12.82 g/Nm3 of tar with 1.75 % of ash. This study confirms the feasibility of the pilot plant for RSW disposal and provides theoretical support for the optimization of pilot plant operation.


Assuntos
Pirólise , Eliminação de Resíduos , Gases , Eliminação de Resíduos/métodos , Resíduos Sólidos , Temperatura
14.
Bioresour Technol ; 363: 127984, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126850

RESUMO

Sewage sludge (SS) is increasingly used as an environment functional material to reduce or control pollution and improve plant growth because of the large amounts of carbon and essential plant nutrients in it. To achieve the best application results, it is essential to comprehensively review recent progress in SS utilization. This review aims to fill the gaps in knowledge by describing the properties of SS, and its usage as adsorbents, catalysts and fertilizers, and certain application mechanisms. Although SS generates several benefits for the environment and humans, many challenges still exist to limit the application, including the risks posed by potentially toxic substances (e.g., heavy metals) in SS. Therefore, future research directions are discussed and how to make SS applications more feasible in terms of technology and economy.


Assuntos
Metais Pesados , Esgotos , Carbono , Fertilizantes , Humanos , Desenvolvimento Vegetal , Solo
15.
Bioresour Technol ; 351: 127045, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35331884

RESUMO

As a clean energy carrier, hydrogen is a promising alternative to fossil fuel so as the global growing energy demand can be met. Currently, producing hydrogen from biowastes through fermentation has attracted much attention due to its multiple advantages of biowastes management and valuable energy generation. Nevertheless, conventional dark fermentation (DF) processes are still hindered by the low biohydrogen yields and challenges of biohydrogen purification, which limit their commercialization. In recent years, researchers have focused on various advanced strategies for enhancing biohydrogen yields, such as screening of super hydrogen-producing bacteria, genetic engineering, cell immobilization, nanomaterials utilization, bioreactors modification, and combination of different processes. This paper critically reviews by discussing the above stated technologies employed in DF, respectively, to improve biohydrogen generation and stating challenges and future perspectives on biowaste-based biohydrogen production.


Assuntos
Biocombustíveis , Hidrogênio , Bactérias/genética , Reatores Biológicos , Fermentação , Hidrogênio/análise
16.
Bioresour Technol ; 324: 124639, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33434875

RESUMO

In this study, a laboratory-scale sequencing batch reactor (SBR) equipped with aerobic granular sludge (AGS) technology was continuously operated for 220 days to remove ammonium from an existing landfill leachate. The ammonium removal was characterized by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) technology. This method helped to analyze the long-term community structural stability of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and denitrifying bacteria (DB) throughout the experiment. Simultaneously, 16S rRNA gene cloning and sequencing analysis identified the dominant species of different microbial species. Experimental results confirmed that ammonium removal was inhibited at the high nitrogen loading rate (NLR) stage while the low NLR stage achieved satisfactory ammonium removal. Moreover, the findings demonstrated that functionally stable wastewater treatment bioreactors facilitated the occurrence of stable microbial community structures.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Reatores Biológicos , Nitrogênio , RNA Ribossômico 16S/genética , Esgotos
17.
Chemosphere ; 265: 129076, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248735

RESUMO

Nitrogen removal is crucial in wastewater treatment process as excessive nitrogen content could result in eutrophication and degradation of aquatic ecosystems. Moreover, to satisfy the fast-growing need of fertilizers due to an increase in human population, recovering nitrogen from wastewater is of the most sustainable approach. Currently, the membrane technique integrated with biological processes namely bio-membrane based integrated system (BMIS) is a promising technology for recovering nitrogen from wastewater, including osmotic membrane bioreactors, bioelectrochemical systems and membrane photobioreactors. In this review study, the nitrogen recovery in different BMHSs, the role of operational parameters and the nitrogen recovery mechanism were discussed. Apart from this, the implementation of nitrogen recovery at pilot- and full-scale was summarized. Perspectives on the major challenges and recommendations of the BMIS for the nitrogen recovery in wastewater treatment were proposed, in which the integrated technologies and more scale-up studies regarding nitrogen recovery by the BMISs were also highlighted and recommended.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Ecossistema , Fertilizantes , Humanos , Osmose , Eliminação de Resíduos Líquidos
18.
Sci Total Environ ; 734: 139220, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32450396

RESUMO

Nutrients recovery has become a meaningful solution to address shortage in the fertilizer production which is the key issue of nations' food security. The concept of municipal wastewater is based on its ability to be a major potential source for recovered nutrients because of its vast quantity and nutrient-rich base. Microbial fuel cell (MFC) has emerged as a sustainable technology, which is able to recover nutrients and simultaneously generate electricity. In this study a two-chambered MFC was constructed, and operated in a continuous flow mode employing artificial municipal wastewater as a substrate. The effects of hydraulic retention time (HRT) on the recovery of nutrients by MFC were studied. The COD removal rates were insignificantly influenced by varying HRT from 0.35 to 0.69 d, that were over 92%. Furthermore, the recovery rate of nutrients was insignificantly affected while increasing the HRT, which fluctuates from 80% to 90%. In contrast, the maximum power generation declined when HRT increased and the lowest one was 510.3 mV at the HRT of 0.35 d. These results demonstrate that the lab-scale double chamber MFC using municipal wastewater as the substrate can provide a highly effective removal strategy for organic matter, nutrients recovery and electricity output when operating at a specific HRT.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Nutrientes , Águas Residuárias
19.
Environ Sci Pollut Res Int ; 26(13): 13299-13310, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30895548

RESUMO

A magnesia-pullulan (MgOP) composite has been developed to remove phosphate from a synthetic solution. In the present study, the removal of phosphate by MgOP was evaluated in both a batch and dynamic system. The batch experiments investigated the initial pH effect on the phosphate removal efficiency from pH 3 to 12 and the effect of co-existing anions. In addition, the adsorption isotherms, thermodynamics, and kinetics were also investigated. The results from the batch experiments indicate that MgOP has encouraging performance for the adsorption of phosphate, while the initial pH value (3-12) had a negligible influence on the phosphate removal efficiency. Analysis of the adsorption thermodynamics demonstrated that the phosphate removal process was endothermic and spontaneous. Investigations into the dynamics of the phosphate removal process were carried out using a fixed bed of MgOP, and the resulting breakthrough curves were used to describe the column phosphate adsorption process at various bed masses, volumetric flow rates, influent phosphate concentrations, reaction temperatures, and inlet pH values. The results suggest that the adsorption of phosphate on MgOP was improved using an increased bed mass, while the reaction temperature did not significantly affect the performance of the MgOP bed during the phosphate removal process. Furthermore, higher influent phosphate concentrations were beneficial towards increasing the column adsorption capacity for phosphate. Several mathematic models, including the Adams-Bohart, Wolboska, Yoon-Nelson, and Thomas models, were employed to fit the fixed-bed data. In addition, the effluent concentration of magnesium ions was measured and the regeneration of MgOP investigated.


Assuntos
Ânions/química , Glucanos/química , Compostos de Magnésio/química , Fosfatos/química , Adsorção , Cinética , Modelos Teóricos , Temperatura , Termodinâmica
20.
Sci Total Environ ; 662: 511-520, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30699371

RESUMO

Immobilizing La(OH)3 nanoparticles (NPs) to porous hosts has been widely applied to inhibiting their inherent aggregation as well as the subsequent low utilization efficiency of La. In this study, a series of rice husk biochars (RHBCs) with high mesoporous rates were prepared and the effects of host pore structure and point of zero charge (pHpzc) on phosphate adsorption by La-modified RHBCs was particularly focused. Characterization results confirmed that La(OH)3 NPs were both confined in the pore channel and external surface of RHBCs. Adsorption kinetics and isotherms showed that La-modified RHBCs with higher mesoporous rates of the host showed a faster adsorption rate and La-modified RHBCs exhibited superior La utilization efficiency than many reported La-incorporated adsorbents. Phosphate could be effectively captured over a wide pH of 3-10 due to the high pHpzc of La-modified RHBCs. Moreover, the La-modified RHBCs showed satisfactory affinity towards phosphate in the presence of coexisting anions and the phosphate adsorption by La-RHBC9 was enhanced in the presence of Ca2+, while it was inhibited in the presence of Mg2+. The mesoporous structure of RHBCs strengthened the stability of La-modified RHBCs and weakened the inhibition of coexisting humic substances on phosphate adsorption through the "shielding effect".


Assuntos
Carvão Vegetal/química , Hidróxidos/química , Lantânio/química , Oryza/química , Fosfatos/análise , Cinética , Nanopartículas Metálicas/química , Porosidade , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA