Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38894378

RESUMO

Bridge early warning based on structural health monitoring (SHM) system is of significant importance for ensuring bridge safe operation. The temperature-induced deflection (TID) is a sensitive indicator for performance degradation of continuous rigid frame bridges, but the time-lag effect makes it challenging to predict the TID accurately. A bridge early warning method based on nonlinear modeling for the TID is proposed in this article. Firstly, the SHM data of temperature and deflection of a continuous rigid frame bridge are analyzed to examine the temperature gradient variation patterns. Kernel principal component analysis (KPCA) is used to extract principal temperature components. Then, the TID is extracted through wavelet transform, and a nonlinear modeling method for the TID considering the temperature gradient is proposed using the support vector machine (SVM). Finally, the prediction errors of the KPCA-SVM algorithm are analyzed, and the early warning thresholds are determined based on the statistical patterns of the errors. The results show that the KPCA-SVM algorithm achieves high-precision nonlinear modeling for the TID while significantly reducing the computational load. The prediction results have coefficients of determination above 0.98 and fluctuate within a small range with clear statistical patterns. Setting the early warning thresholds based on the statistical patterns of errors enables dynamic and multi-level warnings for bridge structures.

2.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065990

RESUMO

During the operation of fabricated small box girder bridges, which face safety issues such as structural degradation and failure, there is an urgent need to propose a safety evaluation method to cope with the possible risks. This article quantitatively evaluates the safety state of a fabricated small box girder bridge in Wuhan City based on Fuzzy Analytic Hierarchy Process (FAHP) and structural health monitoring (SHM) data. Firstly, the FAHP model is established, and stress, deformation, and temperature are selected as evaluation factors. The safety thresholds of stress and deformation are determined by combining the industry specifications and the historical statistical patterns of the massive SHM data. The temperature field of the bridge is simulated and analyzed by combining ANSYS, HYPERMESH, and TAITHREM, and the most unfavorable temperature gradient is determined as a threshold for the safety evaluation. Finally, the scores of indexes of the bridge are determined based on the measured SHM data, which in turn provides a quantitative description of the safety state. The results show that the thresholds determined by the joint industry specifications and the massive SHM data are reasonable; the temperature field simulation model established in this article is consistent with the measured results, and can accurately determine the temperature gradient of the bridge. The safety evaluation result from the FAHP model is the same as the field test results, which verifies the effectiveness and applicability of the proposed method to actual bridge projects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA