Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Toxicol ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491805

RESUMO

BACKGROUND: Esophageal cancer is a highly aggressive malignancy with limited treatment options and poor prognosis. The identification of novel molecular subtypes and therapeutic targets is crucial for improving clinical outcomes. METHOD: In this study, we investigated the role of R-spondin 2 (RSPO2) in esophageal cancer and its association with mitochondrial metabolism. Using bioinformatics analysis of publicly available datasets, we identified a panel of RSPO2-related mitochondrial metabolism genes and their expression patterns in esophageal cancer. Based on these genes, we stratified esophageal cancer patients into distinct molecular subtypes with different survival rates, immune cell infiltration profiles, and drug sensitivities. RESULTS: Our findings suggest that RSPO2-related mitochondrial metabolism genes may serve as potential therapeutic targets and prognostic markers for esophageal cancer. These genes play an important role in the prognosis, immune cell infiltration and drug sensitivity of esophageal cancer. CONCLUSION: The identified molecular subtypes provide valuable insights into the underlying molecular mechanisms of esophageal cancer and could guide personalized treatment strategies in the future.

2.
Plant Biotechnol J ; 15(2): 183-196, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27420922

RESUMO

Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2 O2 , a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss-of-function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone-like protein and interacted with stress-related HSP40 and 2OG-Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone-like protein that possibly prevents drought stress-related proteins from inactivation.


Assuntos
Arabidopsis/metabolismo , Secas , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Estômatos de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/enzimologia , Arabidopsis/genética , Escherichia coli/genética , Genes de Plantas , Germinação , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Mutação , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo
3.
J Proteome Res ; 15(5): 1670-84, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27052409

RESUMO

This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, "Micro-Tom") after long-term exposure to the stress factor. Plants were treated in Magnavaca's solution (pH 4.5) supplemented with 7.5 µM Al(3+) ion activity over a 4 month period beginning at the emergence of flower buds and ending when the lower mature leaves started to turn yellow. Proteomes were identified using a 8-plex isobaric tags for relative and absolute quantification (iTRAQ) labeling strategy followed by a two-dimensional (high- and low-pH) chromatographic separation and final generation of tandem mass spectrometry (MS/MS) spectra of tryptic peptides on an LTQ-Orbitrap Elite mass spectrometer. Principal component analysis revealed that the Al-treatment had induced systemic alterations in the proteomes from roots and leaves but not seed tissues. The significantly changed root proteins were shown to have putative functions in Al(3+) ion uptake and transportation, root development, and a multitude of other cellular processes. Changes in the leaf proteome indicate that the light reaction centers of photosynthetic machinery are the primary targets of Al-induced stress. Embryo and seed-coat tissues derived from Al-treated plants were enriched with stress proteins. The biological processes involving these Al-induced proteins concur with the physiological and morphological changes, such as the disturbance of mineral homeostasis (higher contents of Al, P, and Fe and reduced contents of S, Zn, and Mn in Al-treated compared to nontreated plants) in roots and smaller sizes of roots and the whole plants. More importantly, the identified significant proteins might represent a molecular mechanism for plants to develop toward establishing the Al tolerance and adaptation mechanism over a long period of stress treatment.


Assuntos
Adaptação Fisiológica , Alumínio/farmacologia , Proteoma/efeitos dos fármacos , Solanum lycopersicum/química , Alumínio/farmacocinética , Solanum lycopersicum/embriologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sementes/efeitos dos fármacos , Sementes/metabolismo
4.
Int J Mol Sci ; 17(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490537

RESUMO

Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a "sandwich" system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675).


Assuntos
Secas , Panicum/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Panicum/genética , Panicum/fisiologia , Proteínas de Plantas/genética , Proteômica , Plântula/genética , Transdução de Sinais/genética
5.
Biomark Res ; 11(1): 45, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101220

RESUMO

BACKGROUND: Lung cancer remains the leading cause of cancer mortality worldwide. Early detection of lung cancer helps improve treatment and survival. Numerous aberrant DNA methylations have been reported in early-stage lung cancer. Here, we sought to identify novel DNA methylation biomarkers that could potentially be used for noninvasive early diagnosis of lung cancers. METHODS: This prospective-specimen collection and retrospective-blinded-evaluation trial enrolled a total of 317 participants (198 tissues and 119 plasmas) comprising healthy controls, patients with lung cancer and benign disease between January 2020 and December 2021. Tissue and plasma samples were subjected to targeted bisulfite sequencing with a lung cancer specific panel targeting 9,307 differential methylation regions (DMRs). DMRs associated with lung cancer were identified by comparing the methylation profiles of tissue samples from patients with lung cancer and benign disease. Markers were selected with minimum redundancy and maximum relevance algorithm. A prediction model for lung cancer diagnosis was built through logistic regression algorithm and validated independently in tissue samples. Furthermore, the performance of this developed model was evaluated in a set of plasma cell-free DNA (cfDNA) samples. RESULTS: We identified 7 DMRs corresponding to 7 differentially methylated genes (DMGs) including HOXB4, HOXA7, HOXD8, ITGA4, ZNF808, PTGER4, and B3GNTL1 that were highly associated with lung cancer by comparing the methylation profiles of lung cancer and benign nodule tissue. Based on the 7-DMR biomarker panel, we developed a new diagnostic model in tissue samples, termed "7-DMR model", to distinguish lung cancers from benign diseases, achieving AUCs of 0.97 (95%CI: 0.93-1.00)/0.96 (0.92-1.00), sensitivities of 0.89 (0.82-0.95)/0.92 (0.86-0.98), specificities of 0.94 (0.89-0.99)/1.00 (1.00-1.00), and accuracies of 0.90 (0.84-0.96)/0.94 (0.89-0.99) in the discovery cohort (n = 96) and the independent validation cohort (n = 81), respectively. Furthermore, the 7-DMR model was applied to noninvasive discrimination of lung cancers and non-lung cancers including benign lung diseases and healthy controls in an independent validation cohort of plasma samples (n = 106), yielding an AUC of 0.94 (0.86-1.00), sensitivity of 0.81 (0.73-0.88), specificity of 0.98 (0.95-1.00), and accuracy of 0.93 (0.89-0.98). CONCLUSION: The 7 novel DMRs could be promising methylation biomarkers that merits further development as a noninvasive test for early detection of lung cancer.

6.
Lancet Digit Health ; 5(10): e647-e656, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567793

RESUMO

BACKGROUND: There is an unmet clinical need for accurate non-invasive tests to facilitate the early diagnosis of lung cancer. We propose a combined model of clinical, imaging, and cell-free DNA methylation biomarkers that aims to improve the classification of pulmonary nodules. METHODS: We conducted a prospective specimen collection and retrospective masked evaluation study. We recruited participants with a solitary pulmonary nodule sized 5-30 mm from 24 hospitals across 20 cities in China. Participants who were aged 18 years or older and had been referred with 5-30 mm non-calcified and solitary pulmonary nodules, including solid nodules, part solid nodules, and pure ground-glass nodules, were included. We developed a combined clinical and imaging biomarkers (CIBM) model by machine learning for the classification of malignant and benign pulmonary nodules in a cohort (n=839) and validated it in two cohorts (n=258 in the first cohort and n=283 in the second cohort). We then integrated the CIBM model with our previously established circulating tumour DNA methylation model (PulmoSeek) to create a new combined model, PulmoSeek Plus (n=258), and verified it in an independent cohort (n=283). The clinical utility of the models was evaluated using decision curve analysis. A low cutoff (0·65) for high sensitivity and a high cutoff (0·89) for high specificity were applied simultaneously to stratify pulmonary nodules into low-risk, medium-risk, and high-risk groups. The primary outcome was the diagnostic performance of the CIBM, PulmoSeek, and PulmoSeek Plus models. Participants in this study were drawn from two prospective clinical studies that were registered (NCT03181490 and NCT03651986), the first of which was completed, and the second of which is ongoing because 25% of participants have not yet finished the required 3-year follow-up. FINDINGS: We recruited a total of 1380 participants. 1097 participants were enrolled from July 7, 2017, to Feb 12, 2019; 839 participants were used for the CIBM model training set, and the rest (n=258) for the first CIBM validation set and the PulmoSeek Plus training set. 283 participants were enrolled from Oct 26, 2018, to March 20, 2020, as an independent validation set for the PulmoSeek Plus model and the second validation set for the CIBM model. The CIBM model validation cohorts had area under the curves (AUCs) of 0·85 (95% CI 0·80-0·89) and 0·85 (0·81-0·89). The PulmoSeek Plus model had better discrimination capacity compared with the CIBM and PulmoSeek models with an increase of 0·05 in AUC (PulmoSeek Plus vs CIBM, 95% CI 0·022-0·087, p=0·001; and PulmoSeek Plus vs PulmoSeek, 0·018-0·083, p=0·002). The overall sensitivity of the PulmoSeek Plus model was 0·98 (0·97-0·99) at a fixed specificity of 0·50 for ruling out lung cancer. A high sensitivity of 0·98 (0·96-0·99) was maintained in early-stage lung cancer (stages 0 and I) and 0·99 (0·96-1·00) in 5-10 mm nodules. The decision curve showed that if an invasive intervention, such as surgical resection or biopsy, was deemed necessary at more than the risk threshold score of 0·54, the PulmoSeek Plus model would provide a standardised net benefit of 82·38% (76·06-86·79%), equivalent to correctly identifying approximately 83 of 100 people with lung cancer. Using the PulmoSeek Plus model to classify pulmonary nodules with two cutoffs (0·65 and 0·89) would have reduced 89% (105/118) of unnecessary surgeries and 73% (308/423) of delayed treatments. INTERPRETATION: The PulmoSeek Plus Model combining clinical, imaging, and cell-free DNA methylation biomarkers aids the early diagnosis of pulmonary nodules, with potential application in clinical decision making for the management of pulmonary nodules. FUNDING: The China National Science Foundation, the Key Project of Guangzhou Scientific Research Project, the High-Level University Construction Project of Guangzhou Medical University, the National Key Research & Development Programme, the Guangdong High Level Hospital Construction "Reaching Peak" Plan, the Guangdong Basic and Applied Basic Research Foundation, the National Natural Science Foundation of China, The Leading Projects of Guangzhou Municipal Health Sciences Foundation, the Key Research and Development Plan of Shaanxi Province of China, the Scheme of Guangzhou Economic and Technological Development District for Leading Talents in Innovation and Entrepreneurship, the Scheme of Guangzhou for Leading Talents in Innovation and Entrepreneurship, the Scheme of Guangzhou for Leading Team in Innovation, the Guangzhou Development Zone International Science and Technology Cooperation Project, and the Science and Technology Planning Project of Guangzhou.

7.
Clin Epigenetics ; 14(1): 160, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457093

RESUMO

BACKGROUND: Recurrence represents a well-known poor prognostic factor for colorectal cancer (CRC) patients. This study aimed to establish an effective prognostic prediction model based on noninvasive circulating tumor DNA methylation markers for CRC patients receiving radical surgery. RESULTS: Two methylation markers (cg11186405 and cg17296166) were identified by Cox regression and receiver operating characteristics, which could classify CRC patients into high recurrence risk and low recurrence risk group. The 3-year disease-free survival was significantly different between CRC patients with low and high recurrence risk [Training set: hazard ratio (HR) 28.776, 95% confidence interval (CI) 3.594-230.400; P = 0.002; Validation set: HR 7.796, 95% CI 1.425-42.660, P = 0.018]. The nomogram based on the above two methylation markers and TNM stage was established which demonstrated robust prognostic prediction potential, as evidenced by the decision curve analysis result. CONCLUSIONS: A cell-free DNA methylation model consisting of two DNA methylation markers is a promising method for prognostic prediction in CRC patients.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , Intervalo Livre de Doença , DNA Tumoral Circulante/genética , Metilação de DNA , Intervalo Livre de Progressão , Biomarcadores , Neoplasias Colorretais/genética
8.
Clin Epigenetics ; 13(1): 185, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620221

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related mortality. The alteration of DNA methylation plays a major role in the development of lung cancer. Methylation biomarkers become a possible method for lung cancer diagnosis. RESULTS: We identified eleven lung cancer-specific methylation markers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, and PTGER4-2), which could differentiate benign and malignant pulmonary nodules. The methylation levels of these markers are significantly higher in malignant tissues. In bronchoalveolar lavage fluid (BALF) samples, the methylation signals maintain the same differential trend as in tissues. An optimal 5-marker model for pulmonary nodule diagnosis (malignant vs. benign) was developed from all possible combinations of the eleven markers. In the test set (57 tissue and 71 BALF samples), the area under curve (AUC) value achieves 0.93, and the overall sensitivity is 82% at the specificity of 91%. In an independent validation set (111 BALF samples), the AUC is 0.82 with a specificity of 82% and a sensitivity of 70%. CONCLUSIONS: This model can differentiate pulmonary adenocarcinoma and squamous carcinoma from benign diseases, especially for infection, inflammation, and tuberculosis. The model's performance is not affected by gender, age, smoking history, or the solid components of nodules.


Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , Metilação de DNA/fisiologia , Nódulos Pulmonares Múltiplos/diagnóstico , Idoso , Biomarcadores Tumorais/análise , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/fisiopatologia
9.
Proteomes ; 8(1)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092968

RESUMO

Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.

10.
Proteomes ; 6(2)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565292

RESUMO

In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 µM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis. A total of 216 proteins (approximately 3.6% of total proteins) showed significant differences between non-Al treated control and treated groups with significant fold change (twice the standard deviation; FDR adjusted p-value < 0.05). The apical root tip tissues expressed more dramatic proteome changes (164 significantly changed proteins; 3.9% of total proteins quantified) compared to the elongation/maturation zones (52 significantly changed proteins, 1.1% of total proteins quantified). Significantly changed proteins from the apical 1-cm root apex tissues were clustered into 25 biological pathways; proteins involved in the cell cycle (rotamase FKBP 1 isoforms, and CDC48 protein) were all at a reduced abundance level compared to the non-treated control group. In the root elongation/maturation zone tissues, the identified proteins were placed into 18 pathways, among which proteins involved in secondary metabolism (lignin biosynthesis) were identified. Several STRING protein interaction networks were developed for these Al-induced significantly changed proteins. This study has identified a large number of Al-responsive proteins, including transcription factors, which will be used for exploring new Al tolerance genes and mechanisms. Data are available via ProteomeXchange with identifiers PXD008882 and PXD009125.

11.
Proteomes ; 5(1)2017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28248258

RESUMO

The tomato (Solanum lycopersicum) ripening process from mature green (MG) to turning and then to red stages is accompanied by the occurrences of physiological and biochemical reactions, which ultimately result in the formation of the flavor, color and texture of ripe fruits. The two trivalent metal ions Al3+ and La3+ are known to induce different levels of phytotoxicity in suppressing root growth. This paper aims to understand the impacts of these two metal ions on tomato fruit proteomes. Tomato 'Micro-Tom' plants were grown in a hydroponic culture system supplemented with 50 µM aluminum sulfate (Al2 (SO4)3.18H2O) for Al3+ or La2(SO4)3 for La3+. Quantitative proteomics analysis, using isobaric tags for relative and absolute quantitation, were performed for fruits at MG, turning and red stages. Results show that in MG tomatoes, proteins involved in protein biosynthesis, photosynthesis and primary carbohydrate metabolisms were at a significantly lower level in Al-treated compared to La-treated plants. For the turning and red tomatoes, only a few proteins of significant differences between the two metal treatments were identified. Results from this study indicate that compared to La3+, Al3+ had a greater influence on the basic biological activities in green tomatoes, but such an impact became indistinguishable as tomatoes matured into the late ripening stages.

12.
Proteomes ; 2(2): 169-190, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28250376

RESUMO

Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA