Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
New Phytol ; 242(2): 786-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451101

RESUMO

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Assuntos
Sorghum , Sorghum/metabolismo , Proteínas de Plantas/metabolismo , Flores/fisiologia , Florígeno/metabolismo , Fotoperíodo , Regulação da Expressão Gênica de Plantas
2.
J Chem Phys ; 157(8): 084504, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36049987

RESUMO

Surface wetting phenomena impact chemistry, physics, biology, and engineering. The wetting behaviors of partially miscible binary liquid systems are especially complex. Here, we report evidence of universal behavior in the divergence of wetting layer growth at liquid-vapor interfaces of the cyclohexane + aniline, hexane + o-toluidine, and methanol + carbon disulfide systems. Layer growth on the micron scale was followed using visible light scattering from stirred samples. The layer thicknesses were found to diverge with decreasing temperature when coexistence was approached from the one-phase region, but only for solutions richer in the higher density/higher surface tension component. The onset of divergence was <1 K above the bulk coexistence temperature; nearer the critical composition, the onset temperature was the critical temperature itself. All three systems showed identical divergent wetting properties after variable normalization. In contrast, no divergent wetting layer formation was seen in the benzene + 1,2-propanediol or water + phenol systems. The mathematical sign of the Hamaker constant correlates with the contrasting behaviors. Collectively, these results have implications for theoretical descriptions of adsorption layer growth and crossover behavior, for measurements of complete wetting temperatures, and for practical applications.

3.
Biochemistry ; 60(15): 1148-1164, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33787242

RESUMO

Proton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin. Although photoreduction of flavoproteins can produce either the anionic (ASQ) or neutral semiquinone (NSQ), the factors that favor one over the other are not well understood. Here we employ a biologically active variant of the light-oxygen-voltage (LOV) domain protein VVD devoid of the adduct-forming Cys residue (VVD-III) to probe the mechanism of flavin photoreduction and protonation. A series of isosteric and conservative residue replacements studied by rate measurements, fluorescence quantum yields, FTIR difference spectroscopy, and molecular dynamics simulations indicate that tyrosine residues facilitate charge recombination reactions that limit sustained flavin reduction, whereas methionine residues facilitate radical propagation and quenching and also gate solvent access for flavin protonation. Replacement of a single surface Met residue with Leu favors formation of the ASQ over the NSQ and desensitizes photoreduction to oxidants. In contrast, increasing site hydrophilicity by Gln substitution promotes rapid NSQ formation and weakens the influence of the redox environment. Overall, the photoreactivity of VVD-III can be understood in terms of redundant electron donors, internal hole quenching, and coupled proton transfer reactions that all depend upon protein conformation, dynamics, and solvent penetration.


Assuntos
Flavinas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Luz , Metionina/metabolismo , Engenharia de Proteínas , Prótons , Transporte de Elétrons , Proteínas Fúngicas/genética , Simulação de Dinâmica Molecular , Domínios Proteicos
4.
J Am Chem Soc ; 141(44): 17571-17587, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603693

RESUMO

Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.


Assuntos
Citocromo-c Peroxidase/química , Prótons , Proteínas de Saccharomyces cerevisiae/química , Tirosina/química , Substituição de Aminoácidos , Ligação de Hidrogênio , Oxirredução , Saccharomyces cerevisiae/enzimologia
5.
Proc Natl Acad Sci U S A ; 113(36): 10073-8, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551082

RESUMO

Cryptochrome (CRY) is the principal light sensor of the insect circadian clock. Photoreduction of the Drosophila CRY (dCRY) flavin cofactor to the anionic semiquinone (ASQ) restructures a C-terminal tail helix (CTT) that otherwise inhibits interactions with targets that include the clock protein Timeless (TIM). All-atom molecular dynamics (MD) simulations indicate that flavin reduction destabilizes the CTT, which undergoes large-scale conformational changes (the CTT release) on short (25 ns) timescales. The CTT release correlates with the conformation and protonation state of conserved His378, which resides between the CTT and the flavin cofactor. Poisson-Boltzmann calculations indicate that flavin reduction substantially increases the His378 pKa Consistent with coupling between ASQ formation and His378 protonation, dCRY displays reduced photoreduction rates with increasing pH; however, His378Asn/Arg variants show no such pH dependence. Replica-exchange MD simulations also support CTT release mediated by changes in His378 hydrogen bonding and verify other responsive regions of the protein previously identified by proteolytic sensitivity assays. His378 dCRY variants show varying abilities to light-activate TIM and undergo self-degradation in cellular assays. Surprisingly, His378Arg/Lys variants do not degrade in light despite maintaining reactivity toward TIM, thereby implicating different conformational responses in these two functions. Thus, the dCRY photosensory mechanism involves flavin photoreduction coupled to protonation of His378, whose perturbed hydrogen-bonding pattern alters the CTT and surrounding regions.


Assuntos
Relógios Circadianos/genética , Criptocromos/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/química , Histidina/química , Prótons , Motivos de Aminoácidos , Animais , Benzoquinonas/química , Benzoquinonas/metabolismo , Domínio Catalítico , Criptocromos/genética , Criptocromos/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Flavinas/química , Flavinas/metabolismo , Expressão Gênica , Histidina/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Luz , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Biochemistry ; 55(34): 4807-22, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27499202

RESUMO

The tryptophan 191 cation radical of cytochrome c peroxidase (CcP) compound I (Cpd I) mediates long-range electron transfer (ET) to cytochrome c (Cc). Here we test the effects of chemical substitution at position 191. CcP W191Y forms a stable tyrosyl radical upon reaction with peroxide and produces spectral properties similar to those of Cpd I but has low reactivity toward reduced Cc. CcP W191G and W191F variants also have low activity, as do redox ligands that bind within the W191G cavity. Crystal structures of complexes between Cc and CcP W191X (X = Y, F, or G), as well as W191G with four bound ligands reveal similar 1:1 association modes and heme pocket conformations. The ligands display structural disorder in the pocket and do not hydrogen bond to Asp235, as does Trp191. Well-ordered Tyr191 directs its hydroxyl group toward the porphyrin ring, with no basic residue in the range of interaction. CcP W191X (X = Y, F, or G) variants substituted with zinc-porphyrin (ZnP) undergo photoinduced ET with Cc(III). Their slow charge recombination kinetics that result from loss of the radical center allow resolution of difference spectra for the charge-separated state [ZnP(+), Cc(II)]. The change from a phenyl moiety at position 191 in W191F to a water-filled cavity in W191G produces effects on ET rates much weaker than the effects of the change from Trp to Phe. Low net reactivity of W191Y toward Cc(II) derives either from the inability of ZnP(+) or the Fe-CcP ferryl to oxidize Tyr or from the low potential of the resulting neutral Tyr radical.


Assuntos
Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Cátions/química , Cristalografia por Raios X , Citocromo-c Peroxidase/genética , Transporte de Elétrons , Radicais Livres/química , Cinética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Processos Fotoquímicos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609367

RESUMO

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Assuntos
Hemeproteínas , Synechocystis , Heme , Zinco , Histidina , Hemeproteínas/genética , Synechocystis/genética , Carbono , Ferro
8.
Cell Rep ; 39(7): 110834, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584675

RESUMO

The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Transferases , Zinco , Humanos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Guanosina Trifosfato , Metais/metabolismo , Metionina , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transferases/fisiologia , Zinco/metabolismo
9.
Methods Enzymol ; 620: 509-544, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31072500

RESUMO

Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.


Assuntos
Criptocromos/química , Proteínas de Escherichia coli/química , Diester Fosfórico Hidrolases/química , Criptocromos/isolamento & purificação , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/isolamento & purificação , Flavinas/química , Diester Fosfórico Hidrolases/isolamento & purificação , Estrutura Terciária de Proteína , Espalhamento de Radiação
10.
PLoS One ; 13(9): e0202041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30188903

RESUMO

A cognitively intensive companion service course has been introduced to the main fall general chemistry class at Cornell University. For years 2015 and 2016, priority students (those from groups under-represented and economically disadvantaged) show respectively improvement of +0.67 and +0.51 standard deviations in final course grade compared to priority students not in the program. Non-priority students show respectively a +0.66 and +0.62 standard deviation improvement. Progressive improvement (as measured by higher than expected Final Exam scores than what would have been expected solely from a given student's earlier Exam 1 score) demonstrates conclusively the service course's role in the enhanced outcomes. Progressive retention (as measured by the following year fall semester's organic chemistry exam scores compared to what would have been expected based on a given student's general chemistry final exam score) demonstrates that, on the average, the earlier observed progressive improvement is significantly retained in a chemistry course one year later. Preliminary retention statistics suggest a significant increase in first year to second year retention. A meta analysis of results from previously reported chemistry service courses indicate that such performance gains are difficult to achieve and hence common elements of the few effective programs may be of high value to the STEM education community.


Assuntos
Química/educação , Currículo , Universidades , Adolescente , Adulto , Feminino , Humanos , Masculino
11.
Nat Commun ; 6: 10079, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648256

RESUMO

Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.


Assuntos
Proteínas Arqueais/química , Cisteína/química , Euryarchaeota/química , Fotorreceptores Microbianos/química , Transdução de Sinais , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cisteína/metabolismo , Euryarchaeota/genética , Euryarchaeota/metabolismo , Luz , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA