Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Diagn ; 25(10): 740-747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474002

RESUMO

An epidemic caused by an outbreak of mpox (formerly monkeypox) in May 2022 rapidly spread internationally, requiring an urgent response from the clinical diagnostics community. A detailed description of the clinical validation and implementation of a laboratory-developed real-time PCR test for detecting nonvariola Orthopoxvirus-specific DNA based on the newly designed RealStar Zoonotic Orthopoxvirus assay is presented. The validation was performed using an accuracy panel (n = 97) comprising skin lesion swabs in universal transport media and from mpox virus genomic DNA spiked into pooled mpox virus-negative remnant universal transport media of lesion specimens submitted for routine clinical testing in the NewYork-Presbyterian Hospital clinical laboratory system. Accuracy testing demonstrated excellent assay agreement between expected and observed results and comparable diagnostic performance to three different reference tests. Analytical sensitivity with 95% detection probability was 126 copies/mL, and analytical specificity, clinical sensitivity, and clinical specificity were 100%. In summary, the RealStar Zoonotic Orthopoxvirus assay provides a sensitive and reliable method for routine diagnosis of mpox infections.


Assuntos
Doenças Transmissíveis , Mpox , Orthopoxvirus , Humanos , Orthopoxvirus/genética , Mpox/diagnóstico , Mpox/epidemiologia , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Viral/genética
2.
Hum Gene Ther ; 18(12): 1253-60, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18052719

RESUMO

The ability to genetically modify human T cells to target tumor antigens through retroviral gene transfer constitutes a potentially powerful approach to cancer immunotherapy. However, low transduction efficiencies may hamper the efficacy of such therapeutic strategies in the clinical setting. Most commonly, gammaretroviral gene transfer into T cells is conducted through spinoculation, that is, centrifugation of retroviral particles and T cells on RetroNectin-coated non-tissue culture vessels. Here we present data investigating the impact of temperature, speed, and frequency of spinoculation on T cell transduction efficiencies. We found that all three variables independently impacted gene transfer, with increasing temperature, speed, and frequency of spinoculation all enhancing the transduction of T cells. These improved conditions were additive, with the greatest proportion of transduced T cells being generated at the highest tested temperature and speed, after daily spinoculation for 2 to 3 days. Under these conditions, enhanced gene transfer was observed in T cells derived from healthy donors, using research-grade vector stocks. Whereas both RetroNectin and spinoculation were critical to optimal gene transduction, preloading of gammaretroviral particles before spinoculation did not enhance gene transfer. Significantly, application of these enhanced transduction conditions to T cells derived from previously treated patients with chronic lymphocytic leukemia allowed for adequate gene transfer under both small-scale and large-scale clinically applicable conditions using either preclinical or current Good Manufacturing Practice-grade gammaretroviral vector stocks.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Retroviridae/genética , Linfócitos T , Transdução Genética/métodos , Centrifugação , Humanos , Temperatura
3.
Biochem Pharmacol ; 67(12): 2197-205, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15163551

RESUMO

The novel nitric oxide-donating nonsteroidal antiinflammatory drugs (NO-NSAIDs), consisting of a traditional NSAID to which a NO releasing moiety is covalently attached, may have an important role in colon cancer prevention and/or treatment. Preclinical studies have shown that NO-aspirin (NO-ASA) is more potent than traditional ASA in preventing colon cancer. Preclinical and clinical studies have also documented its superior safety, compared to traditional ASA. To evaluate the role of this structural modification on the cancer cell growth inhibitory effect of NSAIDs, we studied seven pairs of traditional NSAIDs (ASA, salicylic acid, indomethacin, sulindac, ibuprofen, flurbiprofen, piroxicam) and their corresponding NO-NSAIDs. All NO-NSAIDs (except NO-piroxicam which is a salt and not a true NO-NSAID) have greater potency in inhibiting HT-29 and HCT-15 colon cancer cell growth compared to their NSAID counterparts: the IC(50)s of the NO-NSAIDs were enhanced between 7- and 689-fold in HT-29 cells and 1.7- to 1083-fold in HCT-15 cells over those of the corresponding NSAIDs. Their growth inhibitory effect is due to a profound cell kinetic effect consisting of reduced cell proliferation and enhanced cell death. Since HT-29 cells express cyclooxygenases but HCT-15 do not, this effect appears independent of cyclooxygenase in the colon cancer cells. Thus the structural modification of these traditional NSAIDs leading to NO-NSAIDs enhances their potency in inhibiting colon cancer cell growth. Our findings suggest that the enhanced potency imparted on NSAIDs by this structural modification represents a pharmacological property that may be a general one for this class of compounds.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Doadores de Óxido Nítrico/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Análise de Variância , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Células HT29 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA