Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
FASEB J ; 33(1): 430-440, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020828

RESUMO

Fat storage-inducing transmembrane protein 2 (FIT2) aids in partitioning of cellular triacylglycerol into lipid droplets. A genome-wide association study reported FITM2-R3H domain containing like-HNF4A locus to be associated with type 2 diabetes (T2DM) in East Asian populations. Mice with adipose tissue (AT)-specific FIT2 knockout exhibited lipodystrophic features, with reduced AT mass, insulin resistance, and greater inflammation in AT when fed a high-fat diet. The role of FIT2 in regulating human adipocyte function is not known. Here, we found FIT2 protein abundance is lower in subcutaneous and omental AT obtained from patients with T2DM compared with nondiabetic control subjects. Partial loss of FIT2 protein in primary human adipocytes attenuated their lipid storage capacity and induced insulin resistance. After palmitate treatment, triacylglycerol accumulation, insulin-induced Akt (Ser-473) phosphorylation, and insulin-stimulated glucose uptake were significantly reduced in FIT2 knockdown adipocytes compared with control cells. Gene expression of proinflammatory cytokines IL-18 and IL-6 and phosphorylation of the endoplasmic reticulum stress marker inositol-requiring enzyme 1α were greater in FIT2 knockdown adipocytes than in control cells. Our results show for the first time that FIT2 is associated with T2DM in humans and plays an integral role in maintaining metabolically healthy AT function.-Agrawal, M., Yeo, C. R., Shabbir, A., Chhay, V., Silver, D. L., Magkos, F., Vidal-Puig, A., Toh, S.-A. Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes.


Assuntos
Adipócitos/patologia , Diabetes Mellitus Tipo 2/patologia , Resistência à Insulina , Proteínas de Membrana/metabolismo , Triglicerídeos/metabolismo , Adipócitos/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
2.
Appl Microbiol Biotechnol ; 101(13): 5427-5437, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478490

RESUMO

Ginsenosides are believed to be the principal components behind the pharmacological actions of ginseng, and their bioactive properties are closely related to the type, position, and number of sugar moieties attached to the aglycone; thus, modification of the sugar chains may markedly change their biological activities. In this study, major protopanaxadiol type ginsenosides (PD) Rb1, Rc, and Rb2 were isolated from Panax ginseng and were transformed using two probiotic strains namely Bifidobacterium lactis Bi-07 and Lactobacillus rhamnosus HN001 to obtain specific deglycosylated ginsenosides. It was demonstrated that B. lactis transformed ginsenosides Rb1, Rc, and Rb2 to Rd within 1 h of fermentation and rare ginsenoside F2 by the conversion of Rd after 12-h fermentation. The maximum Rd concentration was 147.52 ± 1.45 µg/mL after 48-h fermentation as compared to 45.85 ± 0.71 µg/mL before fermentation. In contrast, L. rhamnosus transformed Rb1, Rc, and Rb2 into Rd as the final metabolite after 72-h fermentation. B. lactis displayed significantly (p < 0.05) higher ß-glucosidase activity against p-nitrophenyl-ß-glucopyranoside than L. rhamnosus and higher bioconversion efficiency during fermentation. The present study suggests that the fermentation of major PD type ginsenosides with B. lactis Bi-07 may serve as an effective means to afford bioactive deglycosylated ginsenosides and to create novel ginsenoside extracts.


Assuntos
Bifidobacterium animalis/metabolismo , Fermentação , Ginsenosídeos/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Sapogeninas/metabolismo , Bifidobacterium animalis/enzimologia , Ginsenosídeos/isolamento & purificação , Lacticaseibacillus rhamnosus/enzimologia , Panax/química , Panax/metabolismo , Probióticos/metabolismo , beta-Glucosidase/metabolismo
3.
Crit Rev Food Sci Nutr ; 54(5): 625-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24261536

RESUMO

Essential oils derived from plants have been recognized for decades to exhibit biological activities, including antioxidant, anticancer, and antimicrobial attributes. Antimicrobial activities of these natural plant materials have been intensively explored in recent years, mainly in response to the overwhelming concern of consumers over the safety of synthetic food additives. Gram-negative organisms are believed to be slightly less sensitive to essential oils than Gram-positive bacteria. Generally, a higher concentration is required to obtain the same efficacy in foods than in synthetic media. The combinations of different types of essential oils or with other food additives have been found to potentially exhibit synergistic if not additive effects. This suggests a cost-efficient and wholesome alternative to both food industry and consumers, at the same time adhering to the hurdle technology in inhibiting proliferation of foodborne pathogens. This review aims to examine the conventional methods commonly used for assessment of antimicrobial activities of essential oils and phytochemicals, the use of these substances as antimicrobials in food products, factors that affect their efficacy, synergism between components or with available food preservatives as well as the challenges and future directions of using essential oils and phytochemicals as natural food preservatives.


Assuntos
Anti-Infecciosos/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Anti-Infecciosos/análise , Sinergismo Farmacológico , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Conservantes de Alimentos/análise , Conservantes de Alimentos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Óleos Voláteis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Óleos de Plantas/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-21799682

RESUMO

An American ginseng (Panax quinquefolius) extract (GE) that contained a quantifiable amount of ginsenosides was investigated for the potential to inhibit proliferation, affect the cell cycle, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Six fingerprint ginsenosides were quantified by high performance liquid chromatography and the respective molecular weights were confirmed by LC-ESI-MS analysis. The extract contained Rg1 (347.3 ± 99.7 µg g(-1), dry weight), Re (8280.4 ± 792.3 µg g(-1)), Rb1 (1585.8 ± 86.8 µg g(-1)), Rc (32.9 ± 8 µg g(-1)), Rb2 (62.6 ± 10.6 µg g(-1)) and Rd (90.4 ± 3.2 µg g(-1)). The GE had a dose-dependent effect on 3T3-L1 cell growth, the LC50 value was determined to be 40.3 ± 5 µg ml(-1). Cell cycle analysis showed modest changes in the cell cycle. No significant changes observed in both G1 and G2/M phases, however there was a significant decrease (P < .05) in the S phase after 24 and 48 h treatment. Apoptotic cells were modest but significantly (P < .05) increased after 48 h (3.2 ± 1.0%) compared to untreated control cells (1.5 ± 0.1%). Lipid acquisition was significantly reduced (P < .05) by 13 and 22% when treated at concentrations of 20.2 and 40.3 µg ml(-1) compared to untreated control cells. In relation to adiponectin activation, western blot analysis showed that the protein expression was significantly (P < .05) increased at concentrations tested. A quantified GE reduced the growth of 3T3-L1 cells, down-regulated the accumulation of lipid and up-regulated the expression of adiponectin in the 3T3-L1 adipocyte cell model.

5.
Molecules ; 16(1): 477-92, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21221064

RESUMO

A Panax ginseng extract (PGE) with a quantified amount of ginsenosides was utilized to investigate its potential to inhibit proliferation, influence lipid acquisition and adiponectin expression in 3T3-L1 cells. Seven fingerprint ginsenosides were quantified using high performance liquid chromatography and their respective molecular weights were further confirmed via LC-ESI-MS analysis from four different extraction methods. Extraction using methanol under reflux produced significantly higher amounts of ginsenosides. The methanol extract consisted of Rg1 (47.40 ± 4.28 mg/g, dry weight of extract), Re (61.62 ± 5.10 mg/g), Rf (6.14 ± 0.28 mg/g), Rb1 (21.73 ± 1.29 mg/g), Rc (78.79 ± 4.15 mg/g), Rb2 (56.80 ± 3.79 mg/g), Rd (5.90 ± 0.41 mg/g). MTT analysis showed that PGE had a concentration-dependent cytotoxic effect on 3T3-L1 preadipocyte and the LC(50) value was calculated to be 18.2 ± 5 µg/mL. Cell cycle analysis showed minimal changes in all four phases. Differentiating adipocytes treated with ginseng extract had a visible decrease in lipid droplets formation measured by Oil red O staining. Consequently, triglycerides levels in media significantly (P < 0.05) decreased by 39.5% and 46.1% when treated at concentrations of 1 µg/mL and 10 µg/mL compared to untreated control cells. Western blot analysis showed that the adiponectin protein expression was significantly (P < 0.05) increased at 10 µg/mL, but not at 1 µg/mL. A quantified PGE reduced the growth of 3T3-L1 cells, down-regulated lipid accumulation and up-regulated adiponectin expression in the 3T3-L1 adipocyte cell model.


Assuntos
Adiponectina/metabolismo , Ginsenosídeos/farmacologia , Metabolismo dos Lipídeos , Panax/química , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ginsenosídeos/química , Camundongos , Espectrometria de Massas por Ionização por Electrospray
6.
J Am Coll Nutr ; 29(3): 204-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20833993

RESUMO

OBJECTIVE: To assess the interaction of the hydroxy-3-methylglutaryl-coezyme A reductase inhibitor lovastatin individually and in combination with 3 natural plant compounds on hepatocarcinoma cell growth. METHODS: The cytotoxic effects of lovastatin in combination with epigallocatechin gallate (EGCG), capsaicin, and curcumin were investigated in cultured hepatocarcinoma cells (Hep-G2), and the interactions were depicted using an isobolographical analysis. RESULTS: All compounds tested reduced Hep-G2 cell growth to various degrees. In terms of individual cytotoxicity LC50 values, curcumin (55.5 ± 7.6 µmol/L) was found to be the most cytotoxic and had the lowest LC50, followed by lovastatin (62.3 ± 5.34 µmol/L), EGCG (82.1 ± 15.1 µmol/L), and capsaicin (199.5 ± 11.72 µmol/L). The individual LC50 values were used in a fix-fraction isobolographical analysis to predict the effect of combining lovastatin and the individual compounds. Experimentally derived LC50 values of 5 fractions containing fixed proportions of lovastatin to each of the 3 natural compounds allowed comparison of the experimentally derived LC50 to the predicted values depicted on the isobologram. CONCLUSION: Lovastatin in combination with capsaicin was found to be synergistic at all concentrations tested, and EGCG combinations produced both synergistic and additive results. Unexpectedly, lovastatin in combination with curcumin produced an antagonistic effect on cell growth, resulting in a greater concentration required than if the compounds were used individually.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Interações Ervas-Drogas , Neoplasias Hepáticas/tratamento farmacológico , Lovastatina/uso terapêutico , Extratos Vegetais/uso terapêutico , Antineoplásicos/farmacologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Células Cultivadas , Curcumina/farmacologia , Curcumina/uso terapêutico , Sinergismo Farmacológico , Células Hep G2 , Humanos , Lovastatina/farmacologia , Extratos Vegetais/farmacologia
7.
J Pharm Biomed Anal ; 139: 148-155, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28282601

RESUMO

Panax ginseng has been studied for its chemo-preventive properties and pharmaceutical potential. Polyacetylenic compounds isolated from Panax ginseng root typically comprised of non-polar C17 compound have been reported to exhibit bioactive properties. The objective of this project is to extract, isolate, and characterize bioactive polyacetylenes from Panax ginseng root using various extraction and separation methods Ginseng was extracted by reflux using methanol, ethanol, hexane, ethyl acetate, methanolic ultrasonication. The extracts were partitioned with hexane to obtain water-soluble portion and hexane-soluble portion. Hexane was subsequently removed under vacuum, and formed a crude polyacetylenes extract (crude PA). Silica gel chromatography and semi-preparative HPLC were utilized to prepare 5 fractions and the polyacetylenes were measure by HPLC and molecular weights confirm my APCI-MS and MNR. The bioactive effect was measured by MTT viability assay using murine 3T3-L1 cells. Extraction with methanol under reflux produced significantly larger amount of polyacetylenes (p<0.05). Liquid-liquid extraction and column chromatography were used to separate polyacetylenic compounds into five different fractions. Major polyacetylenes, panaxynol and panaxydol were found in fraction 1 and 2 respectively. Dose-response relationships were observed in 3T3-L1 cells and LC50 were 13.52±3.05µg/mL (fraction 1), 3.69±1.09µg/mL (fraction 2), 52.88±11.16µg/mL (fraction 3), 85.91±27.37µg/mL (fraction 4) and 135.52±32.91µg/mL (fraction 5). Fraction 2 containing panaxydol was found to have exhibited the greatest anti-proliferative effects on 3T3-L1 preadipocytes. Extraction with methanol under reflux produced significantly more polyacetylenes. Fractions that contain panaxydol was the most cytotoxic.


Assuntos
Panax , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raízes de Plantas , Poli-Inos/isolamento & purificação , Poli-Inos/farmacologia , Células 3T3-L1 , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Extração Líquido-Líquido/métodos , Camundongos , Extratos Vegetais/química , Poli-Inos/química
8.
Sci Rep ; 7(1): 4031, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642596

RESUMO

The Simpson Golabi Behmel Syndrome (SGBS) pre-adipocyte cell strain is widely considered to be a representative in vitro model of human white pre-adipocytes. A recent study suggested that SGBS adipocytes exhibit an unexpected transient brown phenotype. Here, we comprehensively examined key differences between SGBS adipocytes and primary human white subcutaneous (PHWSC) adipocytes. RNA-Seq analysis revealed that extracellular matrix (ECM)-receptor interaction and metabolic pathways were the top two KEGG pathways significantly enriched in SGBS adipocytes, which included positively enriched mitochondrial respiration and oxidation pathways. Compared to PHWSC adipocytes, SGBS adipocytes showed not only greater induction of adipogenic gene expression during differentiation but also increased levels of UCP1 mRNA and protein expression. Functionally, SGBS adipocytes displayed higher ISO-induced basal leak respiration and overall oxygen consumption rate, along with increased triglyceride accumulation and insulin-stimulated glucose uptake. In conclusion, we confirmed that SGBS adipocytes, which are considered of white adipose tissue origin can shift towards a brown/beige adipocyte phenotype. These differences indicate SGBS cells may help to identify mechanisms leading to browning, and inform our understanding for the use of SGBS vis-à-vis primary human subcutaneous adipocytes as a human white adipocyte model, guiding the selection of appropriate cell models in future metabolic research.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Especificidade de Órgãos , Gordura Subcutânea/citologia , Transcriptoma
9.
Diabetes ; 65(5): 1164-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26936961

RESUMO

Increased visceral fat, rather than subcutaneous fat, during the onset of obesity is associated with a higher risk of developing metabolic diseases. The inherent adipogenic properties of human adipose-derived stem cells (ASCs) from visceral depots are compromised compared with those of ASCs from subcutaneous depots, but little is known about the underlying mechanisms. Using ontological analysis of global gene expression studies, we demonstrate that many genes involved in retinoic acid (RA) synthesis or regulated by RA are differentially expressed in human tissues and ASCs from subcutaneous and visceral fat. The endogenous level of RA is higher in visceral ASCs; this is associated with upregulation of the RA synthesis gene through the visceral-specific developmental factor WT1. Excessive RA-mediated activity impedes the adipogenic capability of ASCs at early but not late stages of adipogenesis, which can be reversed by antagonism of RA receptors or knockdown of WT1. Our results reveal the developmental origin of adipocytic properties and the pathophysiological contributions of visceral fat depots.


Assuntos
Adipogenia , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Gordura Intra-Abdominal/metabolismo , Receptores do Ácido Retinoico/agonistas , Transdução de Sinais , Tretinoína/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Cirurgia Bariátrica , Benzoatos/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ontologia Genética , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/patologia , Pessoa de Meia-Idade , Naftalenos/farmacologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Obesidade Mórbida/cirurgia , Interferência de RNA , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/metabolismo , Elementos de Resposta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Gordura Subcutânea Abdominal/citologia , Gordura Subcutânea Abdominal/efeitos dos fármacos , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/patologia , Regulação para Cima/efeitos dos fármacos , Proteínas WT1/antagonistas & inibidores , Proteínas WT1/genética , Proteínas WT1/metabolismo
11.
J Clin Endocrinol Metab ; 100(11): 4249-56, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26308293

RESUMO

CONTEXT: Among Asian ethnic groups, Chinese or Malays are more insulin sensitive than South Asians, in particular in lean individuals. We have further reported that body fat partitioning did not explain this ethnic difference in insulin sensitivity. OBJECTIVE: We examined whether adipocytokines might explain the ethnic differences in the relationship between obesity and insulin resistance among the three major ethnic groups in Singapore. DESIGN AND PARTICIPANTS: This was a cross-sectional study of 101 Chinese, 82 Malays, and 81 South Asian men. Insulin sensitivity index (ISI) was measured using hyperinsulinemic euglycemic clamp. Visceral (VAT) and subcutaneous adipose tissue (SAT) volumes were quantified using magnetic resonance imaging. MAIN OUTCOME MEASURES: Plasma total and high-molecular-weight adiponectin, leptin, visfatin, apelin, IL-6, fibroblast growth factor 21 (FGF21), retinol binding protein-4 (RBP 4), and resistin were measured using enzyme-linked immunoassays. RESULTS: Principle component (PC) analysis on the adipocytokines identified three PCs, which explained 49.5% of the total variance. Adiponectin loaded negatively, and leptin and FGF21 loaded positively onto PC1. Visfatin, resistin, and apelin all loaded positively onto PC2. IL-6 loaded positively and RBP-4 negatively onto PC3. Only PC1 was negatively associated with ISI in all ethnic groups. In the path analysis, SAT and VAT were negatively associated with ISI in Chinese and Malays without significant mediatory role of PC1. In South Asians, the relationship between VAT and ISI was mediated partly through PC1, whereas the relationship between SAT and ISI was mediated mainly through PC1. CONCLUSIONS: The relationships between abdominal obesity, adipocytokines and insulin sensitivity differ between ethnic groups. Adiponectin, leptin, and FGF21 play a mediating role in the relationship between abdominal adiposity and insulin resistance in South Asians, but not in Malays or Chinese.


Assuntos
Adipocinas/fisiologia , Adiposidade/fisiologia , Resistência à Insulina/fisiologia , Adipocinas/sangue , Tecido Adiposo/fisiologia , Adulto , Povo Asiático , Biomarcadores , China/etnologia , Estudos Transversais , Etnicidade , Humanos , Imageamento por Ressonância Magnética , Malásia/etnologia , Masculino , Obesidade Abdominal/sangue , Obesidade Abdominal/fisiopatologia , Singapura , Gordura Subcutânea , Adulto Jovem
12.
Stem Cell Reports ; 2(2): 171-9, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24527391

RESUMO

Adipose-derived stem/stromal cells (ASCs) from the anatomically distinct subcutaneous and visceral depots of white adipose tissue (WAT) differ in their inherent properties. However, little is known about the molecular identity and definitive markers of ASCs from these depots. In this study, ASCs from subcutaneous fat (SC-ASCs) and visceral fat (VS-ASCs) of omental region were isolated and studied. High-content image screening of over 240 cell-surface markers identified several potential depot-specific markers of ASCs. Subsequent studies revealed consistent predominant expression of CD10 in SC-ASCs and CD200 in VS-ASCs across 12 human subjects and in mice. CD10-high-expressing cells sorted from SC-ASCs differentiated better than their CD10-low-expressing counterparts, whereas CD200-low VS-ASCs differentiated better than CD200-high VS-ASCs. The expression of CD10 and CD200 is thus depot-dependent and associates with adipogenic capacities. These markers will offer a valuable tool for tracking and screening of depot-specific stem cell populations.


Assuntos
Antígenos de Superfície/metabolismo , Gordura Intra-Abdominal/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Gordura Subcutânea/citologia , Adipogenia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superfície/genética , Biomarcadores/metabolismo , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Imunofenotipagem , Masculino , Camundongos , Neprilisina/genética , Neprilisina/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA