Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 291(32): 16479-84, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27358407

RESUMO

A small portion of cellular glycogen is transported to and degraded in lysosomes by acid α-glucosidase (GAA) in mammals, but it is unclear why and how glycogen is transported to the lysosomes. Stbd1 has recently been proposed to participate in glycogen trafficking to lysosomes. However, our previous study demonstrated that knockdown of Stbd1 in GAA knock-out mice did not alter lysosomal glycogen storage in skeletal muscles. To further determine whether Stbd1 participates in glycogen transport to lysosomes, we generated GAA/Stbd1 double knock-out mice. In fasted double knock-out mice, glycogen accumulation in skeletal and cardiac muscles was not affected, but glycogen content in liver was reduced by nearly 73% at 3 months of age and by 60% at 13 months as compared with GAA knock-out mice, indicating that the transport of glycogen to lysosomes was suppressed in liver by the loss of Stbd1. Exogenous expression of human Stbd1 in double knock-out mice restored the liver lysosomal glycogen content to the level of GAA knock-out mice, as did a mutant lacking the Atg8 family interacting motif (AIM) and another mutant that contains only the N-terminal 24 hydrophobic segment and the C-terminal starch binding domain (CBM20) interlinked by an HA tag. Our results demonstrate that Stbd1 plays a dominant role in glycogen transport to lysosomes in liver and that the N-terminal transmembrane region and the C-terminal CBM20 domain are critical for this function.


Assuntos
Glicogênio/metabolismo , Fígado/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Glicogênio/genética , Humanos , Lisossomos/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo
2.
J Biol Chem ; 289(8): 4600-25, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24403063

RESUMO

The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2(WT-HA)) or without PPIase activities (Tg-Ranbp2(R2944A-HA)). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2(CLDm-HA)::Ranbp2(-/-), harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results unveil distinct mechanistic and biological links between PPIase and chaperone activities of Ranbp2 cyclophilin toward proteostasis of selective substrates and with novel therapeutic potential.


Assuntos
Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Envelhecimento/metabolismo , Animais , Biocatálise , Regulação para Baixo , Potenciais Evocados Visuais , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Histona Desacetilases/metabolismo , Humanos , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Opsinas/metabolismo , Especificidade de Órgãos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Fatores de Transcrição STAT/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Relação Estrutura-Atividade , Ubiquitina/metabolismo
3.
ACS Chem Neurosci ; 15(10): 1967-1989, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657106

RESUMO

Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.


Assuntos
Ciclofilinas , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Peptidilprolil Isomerase , Proteostase , Animais , Chaperonas Moleculares/metabolismo , Camundongos , Ciclofilinas/metabolismo , Proteostase/fisiologia , Peptidilprolil Isomerase/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Cristalinas/metabolismo
4.
Mol Genet Metab ; 109(3): 312-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23726947

RESUMO

Previous studies strongly suggest that starch binding domain containing protein 1 (Stbd1) plays an important role in intracellular glycogen trafficking into lysosomes. We report here that Stbd1 expression is markedly increased in skeletal muscles but not in heart and liver of GAA-KO mice. An AAV2/9 vector expressing a Stbd1-specific shRNA effectively suppressed Stbd1 expression but did not alter lysosomal glycogen accumulation in the affected tissues of GAA-KO mice. Our results indicate that inhibition of Stbd1 does not appear to be an effective therapeutic approach for Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/metabolismo , Glicogênio/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Knockout , Interferência de RNA
5.
Cell Mol Life Sci ; 69(20): 3511-27, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821000

RESUMO

Many components and pathways transducing multifaceted and deleterious effects of stress stimuli remain ill-defined. The Ran-binding protein 2 (RanBP2) interactome modulates the expression of a range of clinical and cell-context-dependent manifestations upon a variety of stressors. We examined the role of Ranbp2 haploinsufficiency on cellular and metabolic manifestations linked to tyrosine-hydroxylase (TH(+)) dopaminergic neurons and glial cells of the brain and retina upon acute challenge to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a parkinsonian neurotoxin, which models facets of Parkinson disease. MPTP led to stronger akinetic parkinsonism and slower recovery in Ranbp2 (+/-) than wild-type mice without viability changes of brain TH(+)-neurons of either genotype, with the exception of transient nuclear atypia via changes in chromatin condensation of Ranbp2 (+/-) TH(+)-neurons. Conversely, the number of wild-type retinal TH(+)-amacrine neurons compared to Ranbp2 (+/-) underwent milder declines without apoptosis followed by stronger recoveries without neurogenesis. These phenotypes were accompanied by a stronger rise of EdU(+)-proliferative cells and non-proliferative gliosis of GFAP(+)-Müller cells in wild-type than Ranbp2 (+/-) that outlasted the MPTP-insult. Finally, MPTP-treated wild-type and Ranbp2 (+/-) mice present distinct metabolic footprints in the brain or selective regions thereof, such as striatum, that are supportive of RanBP2-mediated regulation of interdependent metabolic pathways of lysine, cholesterol, free-fatty acids, or their ß-oxidation. These studies demonstrate contrasting gene-environment phenodeviances and roles of Ranbp2 between dopaminergic and glial cells of the brain and retina upon oxidative stress-elicited signaling and factors triggering a continuum of metabolic and cellular manifestations and proxies linked to oxidative stress, and chorioretinal and neurological disorders such as Parkinson.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Haploinsuficiência , Chaperonas Moleculares/fisiologia , Neuroglia/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Retina/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Técnicas Imunoenzimáticas , Intoxicação por MPTP/etiologia , Metabolômica , Camundongos , Camundongos Knockout , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurotoxinas/toxicidade , Estresse Oxidativo , Doença de Parkinson/patologia , Fenótipo , Retina/efeitos dos fármacos , Retina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Hum Mol Genet ; 18(22): 4329-39, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19679561

RESUMO

The function of the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) gene is currently not known. However, mutations within the gene lead to Leber Congenital Amaurosis and autosomal recessive retinitis pigmentosa in human patients. In a previously described knockout mouse model of the long splice variant of Rpgrip1, herein referred to as Rpgrip1(tm1Tili) mice, mislocalization of key outer segment proteins and dysmorphogenesis of outer segment discs preceded subsequent photoreceptor degeneration. In this report, we describe a new mouse model carrying a splice acceptor site mutation in Rpgrip1, herein referred to as Rpgrip1(nmf247) that is phenotypically distinct from Rpgrip1(tm1Tili) mice. Photoreceptor degeneration in homozygous Rpgrip1(nmf247) mice is earlier in onset and more severe when compared with Rpgrip1(tm1Tili) mice. Also, ultrastructural studies reveal that whereas Rpgrip1(nmf247) mutants have a normal structure and number of connecting cilia, unlike Rpgrip1(tm1Tili) mice, they do not elaborate rod outer segments (OS). Therefore, in addition to its role in OS disc morphogenesis, RPGRIP1 is essential for rod OS formation. Our study indicates the absence of multiple Rpgrip1 isoforms in Rpgrip1(nmf247) mice, suggesting different isoforms may play different roles in photoreceptors and underscores the importance of considering splice variants when generating targeted null mutations.


Assuntos
Morfogênese , Proteínas/metabolismo , Retina/crescimento & desenvolvimento , Retinose Pigmentar/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Mutação , Transporte Proteico , Proteínas/química , Proteínas/genética , Retina/metabolismo , Retinose Pigmentar/genética , Segmento Externo da Célula Bastonete/química , Alinhamento de Sequência
7.
EMBO Rep ; 10(5): 480-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19305391

RESUMO

The association of cargoes to kinesins is thought to promote kinesin activation, yet the validation of such a model with native cargoes is lacking because none is known to activate kinesins directly in an in vitro system of purified components. The RAN-binding protein 2 (RANBP2), through its kinesin-binding domain (KBD), associates in vivo with kinesin-1, KIF5B/KIF5C. Here, we show that KBD and its flanking domains, RAN GTPase-binding domains 2 and 3 (RBD2/RBD3), activate the ATPase activity of KIF5B approximately 30-fold in the presence of microtubules and ATP. The activation kinetics of KIF5B by RANBP2 is biphasic and highly cooperative. Deletion of one of its RBDs lowers the activation of KIF5B threefold and abolishes cooperativity. Remarkably, RBD2-KBD-RBD3 induces unfolding and modest activation of KIF5B in the absence of microtubules. Hence, RANBP2 is the first native and positive allosteric activator known to jump-start and boost directly the activity of a kinesin.


Assuntos
Regulação Alostérica/fisiologia , Sistema Livre de Células/metabolismo , Cinesinas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Adenosina Trifosfatases/metabolismo , Humanos , Cinesinas/química , Cinesinas/genética , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína
8.
J Gene Med ; 12(11): 881-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20967919

RESUMO

BACKGROUND: Lysosomal storage disorders such as Pompe disease can be more effectively treated, if immune tolerance to enzyme or gene replacement therapy can be achieved. Alternatively, immune responses against acid α-glucosidase (GAA) might be evaded in Pompe disease through muscle-specific expression of GAA with adeno-associated virus (AAV) vectors. METHODS: An AAV vector containing the MHCK7 regulatory cassette to drive muscle-specific GAA expression was administered to GAA knockout (KO) mice, immune tolerant GAA-KO mice and mannose-6-phosphate deficient GAA-KO mice. GAA activity and glycogen content were analyzed in striated muscle to determine biochemical efficacy. RESULTS: The biochemical efficacy from GAA expression was slightly reduced in GAA-KO mice, as demonstrated by higher residual glycogen content in skeletal muscles. Next, immune tolerance to GAA was induced in GAA-KO mice by co-administration of a second AAV vector encoding liver-specific GAA along with the AAV vector encoding muscle-specific GAA. Antibody formation was prevented by liver-specific GAA, and the biochemical efficacy of GAA expression was improved in the absence of antibodies, as demonstrated by significantly reduced glycogen content in the diaphragm. Efficacy was reduced in old GAA-KO mice despite the absence of antibodies. The greatest impact upon gene therapy was observed in GAA-KO mice lacking the mannose-6-phosphate receptor in muscle. The clearance of stored glycogen was markedly impaired despite high GAA expression in receptor-deficient Pompe disease mice. CONCLUSIONS: Overall, antibody formation had a subtle effect upon efficacy, whereas the absence of mannose-6-phosphate receptors markedly impaired muscle-targeted gene therapy in murine Pompe disease.


Assuntos
Formação de Anticorpos , Doença de Depósito de Glicogênio Tipo II/genética , Músculo Esquelético/enzimologia , Receptor IGF Tipo 2/metabolismo , Transgenes , Animais , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Terapia Genética , Vetores Genéticos , Glicogênio/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/metabolismo , Camundongos , Camundongos Knockout , Receptor IGF Tipo 2/genética , alfa-Glucosidases/metabolismo
9.
RSC Adv ; 10(20): 11876-11882, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35496633

RESUMO

The antioxidant capacity (AOC) of chicoric acid (ChA, the main antioxidant component of Echinacea) or an ethanol/water-extract of Echinacea flowers was determined by potentiometric and UV-Vis absorption spectrophotometric titrations with ABTS˙+ radical cations as the oxidizing probe. The potentiometric and spectrophotometric titration results agreed well with each other. The trolox-equivalent antioxidant capacity (TEAC) of ChA was found to be 5.00 ± 0.07 (potentiometry) and 4.81 ± 0.06 (spectrophotometry) at pH 7.4, and the TEAC value has been proven to be actually equal to the ratio of the stoichiometric ratio of the ABTS˙+-ChA redox reaction to that of the ABTS˙+-trolox redox reaction. The TEAC of the ethanol/water-extract of Echinacea flowers, expressed in mM (trolox) per gram per liter (Echinacea extract), was found to be 0.241 ± 0.006 mmol g-1 (potentiometry) and 0.240 ± 0.007 mmol g-1 (spectrophotometry) at pH 7.4. The stoichiometric ratio of the ABTS˙+-ChA redox reaction varied from 10.8 to 3.2, depending on the solution pH and the final ABTS˙+-ChA concentration ratio. However, the stoichiometric ratio of the ABTS˙+-trolox redox reaction remained ca. 2.0 at various solution-pH values and final ABTS˙+-trolox concentration ratios. The unusual stoichiometric ratio of the ABTS˙+-ChA redox reaction is examined by potentiometric/spectrophotometric titrations and cyclic voltammetry, clearly revealing the new mechanism of a rapid redox process followed by a slow redox process at pH 7.4 and 9.0 when the ABTS˙+-ChA molar concentration ratio is greater than 4. The electrochemistry methods coupled with spectrophotometry can conveniently and reliably provide important quantitative and qualitative information on redox chemistry, and are expected to find wider applications in accurately evaluating the redox activities of many other natural/synthesized antioxidants and oxidants.

10.
Exp Biol Med (Maywood) ; 234(8): 918-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19491369

RESUMO

Glaucoma is a group of genetically heterogeneous neurodegenerative disorders causing the degeneration of the ganglion neurons of the retina. Increased intraocular pressure (IOP) is a hallmark risk factor promoting the death of ganglion neurons of the retina in glaucoma. Yet, the molecular processes underlying the degeneration of these neurons by increased IOP are not understood. To gain insight into the early molecular events and discover biomarkers induced by IOP, we performed gene and protein expression profiling to compare retinas of eyes with and without high IOP in a rodent model of experimental glaucoma. This pilot study found that the IOP-mediated changes in the transcription levels of a restricted set of genes implicated in peroxisomal and mitochondrial function, modulation of neuron survival and inflammatory processes, were also accompanied by changes in the levels of proteins encoded by the same genes. With the exception of the inflammatory markers, serum amyloid-A1 (SAA1) and serum amyloid-A2 (SAA2), the IOP-induced changes in protein expression were restricted to ganglion neurons of the retina and they were detected also in the vitreous, thus suggesting an early IOP-mediated loss of ganglion cell integrity. Interestingly, SAA1 and SAA2 were induced in retinal microglia cells, whereas they were reduced in sera of IOP-responsive mice. Hence, this study defines novel IOP-induced molecular processes, biomarkers and sources thereof, and it further validates the extension of the analyses herein reported to other genes modulated by IOP.


Assuntos
Perfilação da Expressão Gênica , Glaucoma/complicações , Glaucoma/genética , Hipertensão Ocular/complicações , Hipertensão Ocular/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glaucoma/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Pressão Intraocular/fisiologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Hipertensão Ocular/fisiopatologia , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia
11.
Mol Ther Methods Clin Dev ; 12: 233-245, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30809555

RESUMO

Pompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken ß-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.

12.
Hum Gene Ther ; 28(3): 286-294, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27832700

RESUMO

Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1ys/ys). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1ys/ys mice at a dose of 5 × 1011 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1ys/ys mice.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Doença de Depósito de Glicogênio Tipo IV/terapia , Glicogênio/metabolismo , Animais , Modelos Animais de Doenças , Doença de Depósito de Glicogênio Tipo IV/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
13.
J Mol Med (Berl) ; 95(5): 513-521, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28154884

RESUMO

Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2. We speculate that 3E10-mediated ERT with GAA will target both lysosomal and cytoplasmic glycogen in Pompe disease. A fusion protein (FabGAA) containing a humanized Fab fragment derived from the murine 3E10 antibody and the 110 kDa human GAA precursor was constructed and produced in CHO cells. Immunostaining with an anti-Fab antibody revealed that the Fab signals did not co-localize with the lysosomal marker LAMP2 in cultured L6 myoblasts or Pompe patient fibroblasts after incubation with FabGAA. Western blot with an anti-GAA antibody showed presence of the 150 kDa full-length FabGAA in the cell lysates, in addition to the 95- and 76 kDa processed forms of GAA that were also seen in the rhGAA-treated cells. Blocking of mannose-6-phosphate receptor with mannose-6-phosphate markedly reduced the 95- and the 76 kDa forms but not the 150 kDa form. In GAA-KO mice, FabGAA achieved similar treatment efficacy as rhGAA at an equal molar dose in reducing tissue glycogen contents. Our data suggest that FabGAA retains the ability of rhGAA to treat lysosomal glycogen accumulation and has the beneficial potential over rhGAA to reduce cytoplasmic glycogen storage in Pompe disease. KEY MESSAGES: FabGAA can be delivered to both the cytoplasm and lysosomes in cultured cells. FabGAA equally reduced lysosomal glycogen accumulation as rhGAA in GAA-KO mice. FabGAA has the beneficial potential over rhGAA to clear cytoplasmic glycogen. This study suggests a novel antibody-enzyme fusion protein therapy for Pompe disease.


Assuntos
Anticorpos/metabolismo , Citoplasma/metabolismo , Terapia de Reposição de Enzimas/métodos , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Glicogênio/metabolismo , Lisossomos/metabolismo , alfa-Glucosidases/uso terapêutico , Animais , Doença de Depósito de Glicogênio Tipo II/metabolismo , Humanos , Camundongos , Camundongos Knockout
14.
Mol Genet Metab Rep ; 13: 18-22, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28761815

RESUMO

A major obstacle to enzyme replacement therapy (ERT) with recombinant human acid-α-glucosidase (rhGAA) for Pompe disease is the development of high titers of anti-rhGAA antibodies in a subset of patients, which often leads to a loss of treatment efficacy. In an effort to induce sustained immune tolerance to rhGAA, we supplemented the rhGAA therapy with a weekly intravenous injection of synthetic vaccine particles carrying rapamycin (SVP-Rapa) during the first 3 weeks of a 12-week course of ERT in GAA-KO mice, and compared this with three intraperitoneal injections of methotrexate (MTX) per week for the first 3 weeks. Empty nanoparticles (NP) were used as negative control for SVP-Rapa. Co-administration of SVP-Rapa with rhGAA resulted in more durable inhibition of anti-rhGAA antibody responses, higher efficacy in glycogen clearance in skeletal muscles, and greater improvement of motor function than mice treated with empty NP or MTX. Body weight loss was observed during the MTX-treatment but not SVP-Rapa-treatment. Our data suggest that co-administration of SVP-Rapa may be an innovative and safe strategy to induce durable immune tolerance to rhGAA during the ERT in patients with Pompe disease, leading to improved clinical outcomes.

15.
Mol Genet Metab Rep ; 9: 31-33, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747161

RESUMO

Patients with progressive hepatic form of GSD IV often die of liver failure in early childhood. We tested the feasibility of using recombinant human acid-α glucosidase (rhGAA) for treating GSD IV. Weekly intravenously injection of rhGAA at 40 mg/kg for 4 weeks significantly reduced hepatic glycogen accumulation, lowered liver/body weight ratio, and reduced plasma ALP and ALT activities in GSD IV mice. Our data suggests that rhGAA is a potential therapy for GSD IV.

16.
JIMD Rep ; 30: 89-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27344645

RESUMO

Deficiency of glycogen branching enzyme in glycogen storage disease type IV (GSD IV) results in accumulation of less-branched and poorly soluble polysaccharides (polyglucosan bodies) in multiple tissues. Standard enzymatic method, when used to quantify glycogen content in GSD IV tissues, causes significant loss of the polysaccharides during preparation of tissue lysates. We report a modified method including an extra boiling step to dissolve the insoluble glycogen, ultimately preserving the glycogen content in tissue homogenates from GSD IV mice. Muscle tissues from wild-type, GSD II and GSD IV mice and GSD III dogs were homogenized in cold water, and homogenate of each tissue was divided into two parts. One part was immediately clarified by centrifugation at 4°C (STD-prep); the other part was boiled for 5 min then centrifuged (Boil-prep) at room temperature. When glycogen was quantified enzymatically in tissue lysates, no significant differences were found between the STD-prep and the Boil-prep for wild-type, GSD II and GSD III muscles. In contrast, glycogen content for GSD IV muscle in the STD-prep was only 11% of that in the Boil-prep, similar to wild-type values. Similar results were observed in other tissues of GSD IV mice and fibroblast cells from a GSD IV patient. This study provides important information for improving disease diagnosis, monitoring disease progression, and evaluating treatment outcomes in both clinical and preclinical clinical settings for GSD IV. This report should be used as an updated protocol in clinical diagnostic laboratories.

17.
Comp Med ; 66(1): 41-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26884409

RESUMO

Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies.


Assuntos
Doenças do Cão/metabolismo , Doença de Depósito de Glicogênio Tipo III/veterinária , Fatores Etários , Animais , Biomarcadores/sangue , Biomarcadores/urina , Modelos Animais de Doenças , Progressão da Doença , Doenças do Cão/patologia , Cães , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo III/metabolismo , Doença de Depósito de Glicogênio Tipo III/patologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Hepatomegalia/veterinária , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/veterinária , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/veterinária , Especificidade da Espécie , Urolitíase/metabolismo , Urolitíase/patologia , Urolitíase/veterinária
18.
J Mol Med (Berl) ; 92(6): 641-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24509886

RESUMO

UNLABELLED: Recently, we reported that progression of liver fibrosis and skeletal myopathy caused by extensive accumulation of cytoplasmic glycogen at advanced age is the major feature of a canine model of glycogen storage disease (GSD) IIIa. Here, we aim to investigate whether rapamycin, a specific inhibitor of mTOR, is an effective therapy for GSD III. Our data show that rapamycin significantly reduced glycogen content in primary muscle cells from human patients with GSD IIIa by suppressing the expression of glycogen synthase and glucose transporter 1. To test the treatment efficacy in vivo, rapamycin was daily administered to GSD IIIa dogs starting from age 2 (early-treatment group) or 8 months (late-treatment group), and liver and skeletal muscle biopsies were performed at age 12 and 16 months. In both treatment groups, muscle glycogen accumulation was not affected at age 12 months but significantly inhibited at 16 months. Liver glycogen content was reduced in the early-treatment group but not in the late-treatment group at age 12 months. Both treatments effectively reduced liver fibrosis at age 16 months, consistent with markedly inhibited transition of hepatic stellate cells into myofibroblasts, the central event in the process of liver fibrosis. Our results suggest a potential useful therapy for GSD III. KEY MESSAGES: Rapamycin inhibited glycogen accumulation in GSD IIIa patient muscle cells. Rapamycin reduced muscle glycogen content in GSD IIIa dogs at advanced age. Rapamycin effectively prevented progression of liver fibrosis in GSD IIIa dogs. Our results suggest rapamycin as potential useful therapy for patients with GSD III.


Assuntos
Doença de Depósito de Glicogênio Tipo III/tratamento farmacológico , Sirolimo/uso terapêutico , Animais , Cães , Glicogênio/metabolismo , Cirrose Hepática/tratamento farmacológico
19.
Biol Open ; 1(2): 140-60, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213406

RESUMO

Mutations affecting the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) interactome cause syndromic retinal dystrophies. RPGRIP1 interacts with the retinitis pigmentosa GTPase regulator (RPGR) through a domain homologous to RCC1 (RHD), a nucleotide exchange factor of Ran GTPase. However, functional relationships between RPGR and RPGRIP1 and their subcellular roles are lacking. We show by molecular modeling and analyses of RPGR disease-mutations that the RPGR-interacting domain (RID) of RPGRIP1 embraces multivalently the shared RHD of RPGR(1-19) and RPGR(ORF15) isoforms and the mutations are non-overlapping with the interface found between RCC1 and Ran GTPase. RPGR disease-mutations grouped into six classes based on their structural locations and differential impairment with RPGRIP1 interaction. RPGRIP1α(1) expression alone causes its profuse self-aggregation, an effect suppressed by co-expression of either RPGR isoform before and after RPGRIP1α(1) self-aggregation ensue. RPGR(1-19) localizes to the endoplasmic reticulum, whereas RPGR(ORF15) presents cytosolic distribution and they determine uniquely the subcellular co-localization of RPGRIP1α(1). Disease mutations in RPGR(1) (-19), RPGR(ORF15), or RID of RPGRIP1α(1), singly or in combination, exert distinct effects on the subcellular targeting, co-localization or tethering of RPGRIP1α(1) with RPGR(1-19) or RPGR(ORF15) in kidney, photoreceptor and hepatocyte cell lines. Additionally, RPGR(ORF15), but not RPGR(1-19), protects the RID of RPGRIP1α(1) from limited proteolysis. These studies define RPGR- and cell-type-dependent targeting pathways with structural and functional plasticity modulating the expression of mutations in RPGR and RPGRIP1. Further, RPGR isoforms distinctively determine the subcellular targeting of RPGRIP1α(1,) with deficits in RPGR(ORF15)-dependent intracellular localization of RPGRIP1α(1) contributing to pathomechanisms shared by etiologically distinct syndromic retinal dystrophies.

20.
Dis Model Mech ; 5(6): 804-11, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22736456

RESUMO

Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.


Assuntos
Modelos Animais de Doenças , Doenças do Cão/patologia , Doença de Depósito de Glicogênio Tipo III/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Adipócitos/ultraestrutura , Animais , Doenças do Cão/sangue , Cães , Jejum/sangue , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo III/sangue , Doença de Depósito de Glicogênio Tipo III/veterinária , Hepatócitos/metabolismo , Hepatócitos/patologia , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Músculos/metabolismo , Músculos/patologia , Músculos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA