Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Immunol ; 45(4): 303-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508931

RESUMO

CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.


Assuntos
Neoplasias , Linfócitos T , Animais , Humanos , Linfócitos T/patologia , Imunoterapia , Imunidade Adaptativa , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Mamíferos
2.
PLoS Biol ; 21(4): e3002073, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011088

RESUMO

As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.


Assuntos
Actinas , Arabidopsis , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Destrina/metabolismo , Fosforilação , Tubo Polínico/metabolismo
3.
FASEB J ; 38(4): e23469, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358361

RESUMO

The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.


Assuntos
Fator de Crescimento Epidérmico , MicroRNAs , Animais , Ratos , Transporte Biológico , Receptores ErbB/genética , Hormônio Foliculoestimulante , MicroRNAs/genética
4.
BMC Biol ; 22(1): 104, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702712

RESUMO

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Hormônio Liberador de Gonadotropina , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Gonadotropinas/metabolismo , Metilação de RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ratos
5.
Mol Pain ; : 17448069241260349, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795338

RESUMO

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by chronic visceral pain with a complex etiology and challenging treatment. Although accumulating evidence supports the involvement of central nervous system sensitization in the development of visceral pain, the precise molecular mechanisms remain incompletely understood. In this study, we highlight the critical regulatory role of lysine-specific demethylase 6B (KDM6B) in the anterior cingulate cortex (ACC) in chronic visceral pain. To simulate clinical IBS conditions, we utilized the neonatal maternal deprivation (NMD) mouse model. Our results demonstrated that NMD induced chronic visceral pain and anxiety-like behaviors in mice. Notably, the protein expression level of KDM6B significantly increased in the ACC of NMD mice, leading to a reduction in the expression level of H32K7me3. Immunofluorescence staining revealed that KDM6B primarily co-localizes with neurons in the ACC, with minimal presence in microglia and astrocytes. Injecting GSK-J4 (a KDM6B-specific inhibitor) into ACC of NMD mice, resulted in a significant alleviation in chronic visceral pain and anxiety-like behaviors, as well as a remarkable reduction in NR2B expression level. ChIP assay further indicated that KDM6B regulates NR2B expression by influencing the demethylation of H3K27me3. In summary, our findings underscore the critical role of KDM6B in regulating chronic visceral pain and anxiety-like behaviors in NMD mice. These insights provide a basis for further understanding the molecular pathways involved in IBS and may pave the way for targeted therapeutic interventions.

6.
Small ; : e2402534, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850182

RESUMO

In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO2 reduction reaction(CO2RR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO3)2 and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CO2RR. Remarkably, Cu@Salen-PIL@Ni(NO3)2 provides a C2+ faradaic efficiency (FEC2+) of 80.9% with partial current density (jC 2+) of 262.9 mA cm-2 at -0.80 V (versus reversible hydrogen electrode, RHE) in 1 m KOH in a flow cell, while Cu@Salen-PIL(Ni) delivers the optimal FEC2+ of 63.8% at jC2+ of 146.7 mA cm-2 at -0.78 V. Mechanistic studies indicates that the presence of Cu-Ni interfaces in Cu@Salen-PIL@Ni(NO3)2 accounts for the preserve of high-valence Cu(I) species under CO2RR conditions. It results in a high activity of both CO2-to-CO conversion and C-C coupling while inhibition of the competitive HER.

7.
Small ; : e2401159, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716681

RESUMO

Defects can introduce atomic structural modulation and tailor performance of materials. Herein, it demonstrates that semiconductor WO3 with inert electrocatalytic behavior can be activated through defect-induced tensile strains. Structural characterizations reveal that when simply treated in Ar/H2 atmosphere, oxygen vacancies will generate in WO3 and cause defective structures. Stacking faults are found in defects, thus modulating electronic structure and transforming electrocatalytic-inert WO3 into highly active electrocatalysts. Density functional theory (DFT) calculations are performed to calculate *H adsorption energies on various WOx surfaces, revealing the oxygen vacancy composition and strain predicted to optimize the catalytic activity of hydrogen evolution reaction (HER). Such defective tungsten oxides can be integrated into commercial proton exchange membrane (PEM) electrolyser with comparable performance toward Pt-based PEM. This work demonstrates defective metal oxides as promising non-noble metal catalysts for commercial PEM green-hydrogen generation.

8.
Plant Physiol ; 193(1): 9-25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002825

RESUMO

Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/fisiologia , Citoesqueleto de Actina , Actinas , Citoplasma
9.
Opt Lett ; 49(15): 4210-4213, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090896

RESUMO

The large-scale deployment of quantum secret sharing (QSS) in quantum networks is currently challenging due to the requirements for the generation and distribution of multipartite entanglement states. Here we present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks. Through the post-matching method, which means the measurement events in the same basis are matched, the key rate is almost independent of the number of participants. In addition, the unconditional security of our QSS against internal and external eavesdroppers can be proved by introducing an equivalent virtual protocol. Our protocol has great performance and technical advantages in future quantum networks.

10.
Chemistry ; 30(24): e202304056, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38379208

RESUMO

3-Indole-3-one is a key intermediate in the synthesis of many drugs and plays an important role in synthetic chemistry and biochemistry. A new method for synthesizing trifluoromethylated 3-indoleketones by Pd(0)-catalyzed carbonylation was introduced. In the absence of additives, 1-chloro-3,3,3-trifluoropropyl (an inexpensive and environmentally friendly synthetic block of trifluoromethyl) reacts with indole and carbon monoxide to generate trifluoromethylindole ketones with good yields, regioselectivity, and chemical selectivity; furthermore, the products exhibit strong resistance to basic functional groups, such as alkynes, aldehydes, and esters. In addition to the conversion of indole compounds into corresponding products, pyrrole and heteroindole may be suitable for corresponding chemical transformations. This study provides a synthetic method for the further construction of trifluoromethylated 3-indole ketones.

11.
Pharmacol Res ; 206: 107268, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908614

RESUMO

Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.


Assuntos
Insuficiência Cardíaca , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos
12.
Ann Bot ; 133(4): 585-604, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38359907

RESUMO

BACKGROUND AND AIMS: Kalanchoideae is one of three subfamilies within Crassulaceae and contains four genera. Despite previous efforts, the phylogeny of Kalanchoideae remains inadequately resolved with persistent issues including low support, unstructured topologies and polytomies. This study aimed to address two central objectives: (1) resolving the pending phylogenetic questions within Kalanchoideae by using organelle-scale 'barcodes' (plastomes) and nuclear data; and (2) investigating interspecific diversity patterns among Kalanchoideae plastomes. METHODS: To explore the plastome evolution in Kalanchoideae, we newly sequenced 38 plastomes representing all four constituent genera (Adromischus, Cotyledon, Kalanchoe and Tylecodon). We performed comparative analyses of plastomic features, including GC and gene contents, gene distributions at the IR (inverted repeat) boundaries, nucleotide divergence, plastomic tRNA (pttRNA) structures and codon aversions. Additionally, phylogenetic inferences were inferred using both the plastomic dataset (79 genes) and nuclear dataset (1054 genes). KEY RESULTS: Significant heterogeneities were observed in plastome lengths among Kalanchoideae, strongly correlated with LSC (large single copy) lengths. Informative diversities existed in the gene content at SSC/IRa (small single copy/inverted repeat a), with unique patterns individually identified in Adromischus leucophyllus and one major Kalanchoe clade. The ycf1 gene was assessed as a shared hypervariable region among all four genera, containing nine lineage-specific indels. Three pttRNAs exhibited unique structures specific to Kalanchoideae and the genera Adromischus and Kalanchoe. Moreover, 24 coding sequences revealed a total of 41 lineage-specific unused codons across all four constituent genera. The phyloplastomic inferences clearly depicted internal branching patterns in Kalanchoideae. Most notably, by both plastid- and nuclear-based phylogenies, our research offers the first evidence that Kalanchoe section Eukalanchoe is not monophyletic. CONCLUSIONS: This study conducted comprehensive analyses on 38 newly reported Kalanchoideae plastomes. Importantly, our results not only reconstructed well-resolved phylogenies within Kalanchoideae, but also identified highly informative unique markers at the subfamily, genus and species levels. These findings significantly enhance our understanding of the evolutionary history of Kalanchoideae.


Assuntos
Crassulaceae , Filogenia , Crassulaceae/genética , Plastídeos/genética , Evolução Biológica , Evolução Molecular , Genomas de Plastídeos
13.
Analyst ; 149(13): 3530-3536, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38757525

RESUMO

ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.


Assuntos
Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos Ferrosos , Ouro , Metalocenos , Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Metalocenos/química , Compostos Ferrosos/química , Técnicas Biossensoriais/métodos , Eletrodos , Polímeros/química , Nanofios/química , Limite de Detecção , Células HeLa
14.
Endocr J ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39069497

RESUMO

Diabetic nephropathy (DN) is a common and serious complication of diabetes, contributing significantly to patient mortality. Complication of DN (CDN) ranks as the second leading cause of end-stage renal disease globally. To address this, understanding the genetic regulation underlying DN is crucial for personalized treatment strategies. In this study, we identified genes and lncRNAs associated with diabetes and diabetic nephropathy constructing a DN-related lncRNA-mRNA network (DNLMN). This network, characterized by scale-free biomolecular properties, generated through the study of topological properties, elucidates key regulatory interactions. Enrichment analysis of important network modules revealed critical biological processes and pathways involved in DN pathogenesis. In the second step, we investigated the differential expression and co-expression of hub nodes in diseased and normal individuals, identifying lncRNA-mRNA relationships implicated in disease regulation. Finally, we gathered DN-related single nucleotide polymorphisms (SNPs) and lncRNAs from the LincSNP 3.0 database. The DNLMN encompasses SNP-associated lncRNAs, and transcription factors (TFs) linked to differentially expressed lncRNAs between diseased and normal samples. These results underscore the significance of biomolecular networks in disease progression and highlighting the role of biomolecular variability contributes to personalized disease phenotyping and treatment.

15.
Curr Pain Headache Rep ; 28(7): 699-708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38526650

RESUMO

PURPOSE OF REVIEW: Lumbar facet pain is generally considered to be one of the major causes of chronic low back pain. Each lumbar facet joint is innervated by the medial branch of the posterior spinal nerve from its own level and above. Radiofrequency (RF) of the medial branch of the posterior branch of the spinal nerve is an effective method for the treatment of lumbar facet pain. RF technology is diverse, including traditional radiofrequency (TRF), pulsed radiofrequency (PRF), cooled radiofrequency (CRF), low-temperature plasma radiofrequency ablation (CA), and other treatment methods. The purpose of this paper is to compare the efficacy of different radiofrequency techniques and to analyze the reasons for this in the context of anatomy. RECENT FINDINGS: There have been studies confirming the differences in efficacy of different RF techniques. However, most of the studies only compared two RF techniques, not four techniques, TRF, CRF, PRF, and CA, and did not analyze the reasons for the differences in efficacy. This article reviews the differences in the efficacy of the above four RF techniques, clarifies that the differences are mainly due to the inability to precisely localize the medial branch of the posterior branch of the spinal nerve, analyzes the reasons for the inability to precisely localize the posterior branch of the spinal nerve in conjunction with anatomy, and proposes that the development of RF technology for lumbar facet pain requires more in-depth anatomical, imaging, and clinical studies.


Assuntos
Dor Lombar , Articulação Zigapofisária , Humanos , Ablação por Cateter/métodos , Dor Lombar/terapia , Vértebras Lombares/cirurgia , Ablação por Radiofrequência/métodos , Terapia por Radiofrequência/métodos , Nervos Espinhais , Resultado do Tratamento , Articulação Zigapofisária/cirurgia , Articulação Zigapofisária/inervação
16.
J Med Internet Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168813

RESUMO

BACKGROUND: Internet hospitals (IHs) have rapidly developed as a promising strategy to address supply-demand imbalances in China's medical industry, with their capabilities directly dependent on information platform functionality. Moreover, a novel theory of "Trinity" smart hospital has provided advanced guidelines of IHs construction. OBJECTIVE: To explore the construction experience, construction models, and development prospects based on operational data from IHs. METHODS: Based on existing information systems and internet service functionalities, our hospital has built a "Smart Hospital Internet Information Platform (SHIIP)" for IHs operation, actively to expand online services, digitalize traditional healthcare, and explore healthcare services modes throughout the entire process and lifecycle. This article encompasses the platform architecture design, technological applications, patient service content and processes, healthcare professional support features, administrative management tools, and associated operational data. RESULTS: Our platform has presented a remarkable set of data, including 82,279,669 visits, 420,120 online medical consultations, 124,422 electronic prescriptions, 92,285 medication deliveries, 6,965,566 pre-diagnosis triages, 4,995,824 offline outpatient appointments, 2,025 medical education articles with a total of 15,148,310 views, and so on. These data demonstrate the significant role of IH as an indispensable component of our physical hospital services, with a deep integration between online and offline healthcare systems. CONCLUSIONS: Attributing to extreme convenience and improved efficiency, our IH has achieved a wide recognition and use from both the public and healthcare workers, and the upward trends in multiple data metrics suggest a promising outlook for its sustained and positive development in the future. Our pioneering exploration holds tremendous significance and serves as a valuable guiding reference for IHs construction and the progressive development of the internet healthcare sector.

17.
Genomics ; 115(6): 110730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866658

RESUMO

RNA-binding proteins (RBPs), which are key effectors of gene expression, play critical roles in inflammation and immune regulation. However, the potential biological function of RBPs in ankylosing spondylitis (AS) remains unclear. We identified differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of five patients with AS and three healthy persons by RNA-seq, obtained differentially expressed RBPs by overlapping DEGs and RBPs summary table. RIOK3 was selected as a target RBP and knocked down in mouse bone marrow mesenchymal stem cells (mBMSCs), and transcriptomic studies of siRIOK3 mBMSCs were performed again using RNA-seq. Results showed that RIOK3 knockdown inhibited the expression of genes related to osteogenic differentiation, ribosome function, and ß-interferon pathways in mBMSCs. In vitro experiments have shown that RIOK3 knockdown reduced the osteogenic differentiation ability of mBMSCs. Collectively, RIOK3 may affect the differentiation of mBMSCs and participate in the pathogenesis of AS, especially pathological bone formation.


Assuntos
Células-Tronco Mesenquimais , Espondilite Anquilosante , Animais , Humanos , Camundongos , Diferenciação Celular , Células Cultivadas , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Espondilite Anquilosante/patologia
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 490-496, 2024 Aug.
Artigo em Zh | MEDLINE | ID: mdl-39223013

RESUMO

Objective To investigate the status and influencing factors of pressuring feeding style among caregivers in remote rural areas of Sichuan province. Methods Multistage sampling was conducted to select infants of 6-11 months old who had received complementary food and their caregivers in remote rural areas of Sichuan province.A questionnaire was used to collect sociodemographic characteristics of infants and their caregivers,pressuring feeding behaviors,feeding environment,and caregivers' negative emotions.Quantile regression was employed to analyze the factors influencing pressuring feeding among caregivers of infants. Results A total of 1358 pairs of infants and their caregivers were included,with the pressuring feeding behavior score of 11 (8,14).Parity was the protective factor for caregivers' pressuring feeding (ß25=-1.17,P<0.001;ß50=-1.40,P=0.002;ß75=-2.18,P<0.001).Whether infants played with toys while eating (ß25=1.00,P<0.001;ß50=1.20,P=0.003;ß75=1.42,P<0.001) and whether infants watched TV/mobile phones (ß25=0.50,P=0.048;ß50=1.07,P=0.004) were the risk factors.At the 75th percentile,caregivers' negative emotions were the risk factor for pressuring feeding (ß75=0.94,P=0.015).Caregivers' education background (ß25=0.83,P=0.034;ß50=0.87,P=0.021) and family income (ß75=1.09,P=0.012) were also significantly associated with pressuring feeding scores at different quartile points. Conclusion Pressuring feeding behaviors of caregivers in remote rural areas of Sichuan province need to be improved.Based on the characteristics of infants and their families,guidance should be carried out to improve the feeding environment and the mental health of caregivers,thereby promoting reasonable feeding behaviors among caregivers of infants in rural areas.


Assuntos
Cuidadores , Comportamento Alimentar , População Rural , Humanos , Lactente , Cuidadores/psicologia , Feminino , China , Masculino , Inquéritos e Questionários , Adulto
19.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812238

RESUMO

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Assuntos
Apoptose , Frutas , Galactose , Glutaminase , Glutamina , Mitocôndrias , Transdução de Sinais , Triterpenos , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Triterpenos/farmacologia , Triterpenos/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Frutas/química , Glutamina/farmacologia , Glutamina/metabolismo , Glutaminase/metabolismo , Glutaminase/genética , Senescência Celular/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo
20.
J Transl Med ; 21(1): 746, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875936

RESUMO

CRISPR/Cas9, a highly versatile genome-editing tool, has garnered significant attention in recent years. Despite the unique characteristics of oocytes and early embryos compared to other cell types, this technology has been increasing used in mammalian reproduction. In this comprehensive review, we elucidate the fundamental principles of CRISPR/Cas9-related methodologies and explore their wide-ranging applications in deciphering molecular intricacies during oocyte and early embryo development as well as in addressing associated diseases. However, it is imperative to acknowledge the limitations inherent to these technologies, including the potential for off-target effects, as well as the ethical concerns surrounding the manipulation of human embryos. Thus, a judicious and thoughtful approach is warranted. Regardless of these challenges, CRISPR/Cas9 technology undeniably represents a formidable tool for genome and epigenome manipulation within oocytes and early embryos. Continuous refinements in this field are poised to fortify its future prospects and applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Oócitos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA