RESUMO
BACKGROUND: Rodents are important virus reservoirs and natural hosts for multiple viruses. They are one of the wild animals that are extremely threatening to the spread of human viruses. Therefore, research on rodents carrying viruses and identifying new viruses that rodents carry is of great significance for preventing and controlling viral diseases. METHODS: In this study, fecal samples from six species of forest rodents in Northeast China were sequenced using metagenomics, and an abundance of virome information was acquired. Selection of important zoonotic in individual rodents for further sequence and evolutionary analysis. RESULTS: Among the top 10 most abundant viral families, RNA virus include Orthomyxoviridae, Picornaviridae, Bunyaviridae and Arenaviridae, DNA virus include Herpesviridae, Insect virus include Nodaviridae and Baculoviridae, Plant virus Tombusviridae and Phage (Myoriviridae). Except for Myoviridae, there was no significant difference in the abundance of virus families in the feces of each rodent species. In addition, a new strain of astrovirus was discovered, with an ORF and genome arrangement comparable to other rodent astroviruses.The newly identified astrovirus had the highest similarity with the rodent astrovirus isolate, CHN/100. CONCLUSIONS: The data obtained in this study provided an overview of the viral community present in these rodent fecal samples, revealing some rodent-associated viruses closely related to known human or animal pathogens. Strengthening our understanding of unclassified viruses harbored by rodents present in the natural environment could provide scientific guidance for preventing and controlling new viral outbreaks that can spread via rodents.
Assuntos
Vírus de Plantas , Vírus de RNA , Animais , Fezes , Florestas , Genoma Viral , Humanos , Metagenoma , Metagenômica , Filogenia , Vírus de Plantas/genética , Vírus de RNA/genética , Roedores/genéticaRESUMO
RNA polymerase III is an essential enzyme in eukaryotes for synthesis of tRNA, 5S rRNA, and other small nuclear and cytoplasmic RNAs. Thus, RNA polymerase III promoters are often used in small hairpin RNA (shRNA) expression. In this study, the porcine H1, U6, and 7SK RNA polymerase III type promoters were cloned into a pcDNA3.1( +) expression vector containing a shRNA sequence targeting enhanced green fluorescent protein (EGFP). PK and DF-1 cells were cotransfected with the construction of recombinant interference expression vector and the EGFP expression vector, pEGFP-N1. The average fluorescence intensity of EGFP in transfected cells was measured by fluorescence microscopy and flow cytometry. Real-time PCR was used to detect expressed shRNAs and the relative expression of EGFP, to confirm the activity of the promoters. The results showed that the activity of porcine 7SK promoter is stronger than the U6 promoter, which is in turn stronger than porcine H1. While the high levels of expression of the U6 and 7SK promoters saturate the shRNAs level in the host cell, which can cause cytotoxicity and tissue damage. Therefore, porcine H1 promoter is effective for expression of shRNA, and may be an excellent tool to knockdown gene expression in pigs for functional genomics studies. The results also lay a foundation for the development of porcine RNAi technology and genetically modified porcine research.
Assuntos
Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase III/genética , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Linhagem Celular , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Interferência de RNA/fisiologia , Suínos , Transfecção/métodosRESUMO
Duck enteritis virus (DEV) is an acute, septic, sexually transmitted disease that occurs in ducks, geese and other poultry. Autophagy is an evolutionarily ancient pathway that is important in many viral infections. Despite extensive study, the interplay between DEV and autophagy of host cells is not clearly understood. In this study, we found that DEV infection triggers autophagy in duck embryo fibroblast (DEF) cells, as demonstrated by the appearance of autophagosome-like double- or single-membrane vesicles in the cytoplasm of host cells and the number of GFP-LC3 dots. In addition, increased conversion of the autophagy marker protein LC3-I and LC3-II and decreased p62/SQSTM1 indicated complete autophagy flux. Heat-inactivated DEV infection did not induce autophagy, suggesting that the trigger of autophagy in DEF cells depended on DEV replication. When autophagy was pharmacologically inhibited by LY294002 or wortmannin, DEV replication decreased. The DEV offspring yield decreased when small interference RNA was used to interfere with autophagy related to the genes Beclin-1 and ATG5. In contrast, after treating DEF cells with rapamycin, an inducer of autophagy, DEV replication increased. These results indicated that DEV infection induced autophagy in DEF cells and autophagy facilitated DEV replication.
Assuntos
Autofagia , Mardivirus/fisiologia , Doença de Marek/virologia , Replicação Viral , Androstadienos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/genética , Cromonas/farmacologia , Patos , Fibroblastos/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Morfolinas/farmacologia , Fagossomos/metabolismo , Fagossomos/virologia , RNA Interferente Pequeno , Sirolimo/farmacologia , WortmaninaRESUMO
Intestinal microbiota regulates the host metabolism, including fat metabolism and muscle development in mammals; however, studies on the interactions between the gut microbiome and in chickens with respect to fat metabolism and muscle development are still rare. We established a germ-free (GF) chicken model to determine the transcriptomes and metabolomes of GF and specific-pathogen-free (SPF) chickens. Transcriptome analysis showed 1,282 differentially expressed genes (DEGs) in GF and SPF chickens. The expression levels of some genes related to muscle formation were very high in SPF chickens but low in GF chickens, suggesting that GF chickens had poorer muscle development ability. In contrast, the expression levels of some fat synthesis-related genes were very low in SPF chickens but high in GF chickens, suggesting that GF chickens had a more potent fat-synthesizing ability. Metabolome analysis revealed 62 differentially expressed metabolites (DEMs) in GF and SPF chickens, of which 35 were upregulated and 27 were downregulated. Furthermore, the Pearson correlation coefficient (PCC) was calculated, and an interaction network was constructed to visualize the crosstalk between the genes, metabolites, and gut microbiota in GF and SPF chickens. The top 10 gut microbiota were positively correlated with lipid metabolism including13(S)-HpODE and 9(S)-HpOTrE, and genes related to muscle development, while were negatively correlated with genes related to fat synthesis. In conclusion, this study indicated that chicken intestinal microbiota regulate host metabolism, inhibit fat synthesis, and may promote muscle development.
Assuntos
Galinhas , Microbiota , Animais , Galinhas/genética , Multiômica , Músculos , Transcriptoma , MamíferosRESUMO
BACKGROUND: Mammalian intestinal microbiomes are necessary for antagonizing systemic viral infections. However, very few studies have identified whether poultry commensal bacteria play a crucial role in protecting against systemic viral infections. Nephropathogenic infectious bronchitis virus (IBV) is a pathogenic coronavirus that causes high morbidity and multiorgan infection tropism in chickens. RESULTS: In this study, we used broad-spectrum oral antibiotics (ABX) to treat specific pathogen free (SPF) chickens to deplete the microbiota before infection with nephropathogenic IBV to analyze the impact of microbiota on IBV infections in vivo. Depletion of the SPF chicken microbiota increases pathogenicity and viral burden following IBV infection. The gnotobiotic chicken infection model further demonstrated that intestinal microbes are resistant to nephropathogenic IBV infection. In addition, ABX-treated chickens showed a severe reduction in macrophage activation, impaired type I IFN production, and IFN-stimulated gene expression in peripheral blood mononuclear cells and the spleen. Lactobacillus isolated from SPF chickens could restore microbiota-depleted chicken macrophage activation and the IFNAR-dependent type I IFN response to limit IBV infection. Furthermore, exopolysaccharide metabolites of Lactobacillus spp. could induce IFN-ß. CONCLUSIONS: This study revealed the resistance mechanism of SPF chicken intestinal microbiota to nephropathogenic IBV infection, providing new ideas for preventing and controlling nephropathogenic IBV. Video abstract.
Assuntos
Microbioma Gastrointestinal , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Antibacterianos , Galinhas , Vírus da Bronquite Infecciosa/genética , Leucócitos Mononucleares , MamíferosRESUMO
Autophagy is a catabolic biological process in the body. By targeting exogenous microorganisms and aged intracellular proteins and organelles and sending them to the lysosome for phagocytosis and degradation, autophagy contributes to energy recycling. When cells are stimulated by exogenous pathogenic microorganisms such as viruses, activation or inhibition of autophagy is often triggered. As autophagy has antiviral effects, many viruses may escape and resist the process by encoding viral proteins. At the same time, viruses can also use autophagy to enhance their replication or increase the persistence of latent infections. Here, we give a brief overview of autophagy and DNA viruses and comprehensively review the known interactions between human and animal DNA viruses and autophagy and the role and mechanisms of autophagy in viral DNA replication and DNA virus-induced innate and acquired immunity.