Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(35): 13981-13991, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36000253

RESUMO

Recently, metal-organic framework (MOF)-based photocatalysts for an efficient CO2 reduction reaction have drawn wide attention in multidisciplinary fields and sustainable chemistry. In this work, a series of Cu2+-doped two-dimensional Ti-based MOFs were fabricated by a facile in situ solvothermal method. Cu2+ ions were doped in equal proportions and uniformly dispersed in the crystal structure of the MOF matrix. Interestingly, the doping content of Cu2+ ions and the photocatalytic performance displayed an obvious volcanic relationship, the medium-concentration Cu2+-doped sample (T1-2Cu) held the greatest activity with 100% carbonaceous product (CH4 and CO) formation, and the CH4 production rate was 3.7 µmol g-1 h-1 with 93% electron selectivity. The band structure, local electronic structure, carrier separation kinetics, and CO2 adsorption studies demonstrated that the excellent photocatalytic activity of T1-2Cu benefited from the appropriate amount of Cu2+ ion doping: (1) a doping amount of 2 atom % optimized the conduction band position of the MOF substrate and endowed T1-2Cu with strong reduction potential in thermodynamics, (2) doping Cu2+ ions tuned the local electronic environment around titanium oxide clusters and optimized the generation, separation, and migration processes of photoinduced carriers, and (3) the introduction of Cu2+ ions also provided more accessible active sites and more probabilities for the adsorption and activation of CO2 reactants.

2.
Inorg Chem ; 60(7): 4207-4217, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33373226

RESUMO

A fundamental study on the metal-support interactions of supported metal catalysts is of great importance for developing heterogeneous catalysts with high performance, is still attracting and challenging in many heterogeneous catalytic reactions. In this work, we report the catalytic performances of CeO2-supported noble-metal catalysts among single atoms, subnanoclusters (∼1 nm), and nanoparticles (2.2-2.7 nm) upon low-temperature CO oxidation reaction between 50 and 250 °C. The subnanoclusters and nanoparticles of Ru, Rh, and Ir showed much higher activities than those of the single atoms, while a Pd single-atom catalyst was more active than Pd subnanoclusters and nanoparticles. According to the results of multiple ex situ and in situ characterizations, the much different activities of Ru, Rh, Ir, and Pd were derived from the alterable electronic metal-support interactions (EMSI), which determine the concurrent reaction pathway including the famous Mars van Krevelen mechanism and carbonate-intermediate route on the most active metal sites of Mδ+ (0 < δ < 1) for Ru, Rh, and Ir and Pd2+ for Pd. Also, the moderate EMSI of CeO2-supported Rh subnanoclusters furthest benefited activation of the adsorbed CO molecule and ensured it the highest activity among CeO2-supported Ru, Rh, and Ir catalysts with similar metal deposit sizes.

3.
Nat Commun ; 14(1): 2934, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217475

RESUMO

Deciphering the three-dimensional atomic structure of solid-solid interfaces in core-shell nanomaterials is the key to understand their catalytical, optical and electronic properties. Here, we probe the three-dimensional atomic structures of palladium-platinum core-shell nanoparticles at the single-atom level using atomic resolution electron tomography. We quantify the rich structural variety of core-shell nanoparticles with heteroepitaxy in 3D at atomic resolution. Instead of forming an atomically-sharp boundary, the core-shell interface is found to be atomically diffuse with an average thickness of 4.2 Å, irrespective of the particle's morphology or crystallographic texture. The high concentration of Pd in the diffusive interface is highly related to the free Pd atoms dissolved from the Pd seeds, which is confirmed by atomic images of Pd and Pt single atoms and sub-nanometer clusters using cryogenic electron microscopy. These results advance our understanding of core-shell structures at the fundamental level, providing potential strategies into precise nanomaterial manipulation and chemical property regulation.

4.
RSC Adv ; 11(61): 38486-38494, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493218

RESUMO

Tandem catalysis, in which a CO2-to-C2 process is divided into a CO2-to-CO/*CO step and a CO/*CO-to-C2 step, is promising for enhancing the C2 product selectivity when using Cu-based electrochemical CO2 reduction catalysts. In this work, a nanoporous hollow Au/CuO-CuO tandem catalyst was used for catalyzing the eCO2RR, which exhibited a C2 product FE of 52.8% at -1.0 V vs. RHE and a C2 product partial current density of 78.77 mA cm-2 at -1.5 V vs. RHE. In addition, the C2 product FE stably remained at over 40% over a wide potential range, from -1.0 V to -1.5 V. This superior performance was attributed to good matching in terms of the optimal working potential and charge-transfer resistance between CO/*CO-production sites (Au/CuO) and CO/*CO-reduction sites (CuO). This site pair matching effect ensured sufficient supplies of CO/*CO and electrons at CuO sites at the working potentials, thus dramatically enhancing the formation rate of C2 products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA