Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-18, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36037147

RESUMO

Background: The etiology of Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, is multifactorial but not fully unknown. Until now, no drug has been proven to have neuroprotective or neuroregenerative effects in patients with PD.Objectives: To observe the therapeutic potential of Bilobalide (BB), a constituent of ginkgo biloba, in MPTP-induced PD model, and explore its possible mechanisms of action.Material and Methods: Mice were randomly divided into three groups: healthy group, MPTP group and MPTP + BB group. PD-related phenotypes were induced by intraperitoneal injection of MPTP into male C57BL/6 mice, and BB (40 mg/kg/day) was intraperitoneally given for 7 consecutive days at the end of modeling. The injection of saline was set up as the control in a similar manner.Results: BB induced M2 polarization of microglia, accompanied by inhibition of neuroinflammation in the brain. Simultaneously, BB promoted the expression of BDNF in astrocytes and neurons, and expression of GDNF in neurons. Most interestingly, BB enhanced the formation of GFAP+ astrocytes expressing nestin, Brn2 and Ki67, as well as the transformation of GFAP+ astrocytes expressing tyrosine hydroxylase around subventricular zone, providing experimental evidence that BB could promote the conversion of astrocytes into TH+ dopamine neurons in vivo and in vitro.Conclusions: These results suggest the natural product BB may utilize multiple pathways to modify degenerative process of TH+ neurons, revealing an exciting opportunity for novel neuroprotective therapeutics. However, its multi-target and important mechanisms need to be further explored.

2.
J Neurophysiol ; 126(5): 1756-1771, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669500

RESUMO

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). Here we report the temporal and spatial evolution of various functional neurons during demyelination in a cuprizone (CPZ)-induced mouse model. CPZ did not significantly induce the damage of axons and neurons after 2 wk of feeding. However, after 4-6 wk of CPZ feeding, axons and neurons were markedly reduced in the cortex, posterior thalamic nuclear group, and hippocampus. Simultaneously, the expression of TPH+ tryptophan neurons and VGLUT1+ glutamate neurons was obviously decreased, and the expression of TH+ dopaminergic neurons was slightly decreased in the tail part of the substantia nigra striatum, whereas the number of ChAT+ cholinergic neurons was not significantly different in the brain. In the second week of feeding, CPZ caused a higher level of glutamate secretion and upregulated the expression of EAAT2 on astrocytes, which should contribute to rapid and sufficient glutamate uptake and removal. This finding reveals that astrocyte-driven glutamate reuptake protected the CNS from excitotoxicity by rapid reuptake of glutamate in 4-6 wk of CPZ feeding. At this stage, although NG2+ oligodendroglia progenitor cells (OPCs) were enhanced in the demyelination foci, the myelin sheath was still absent. In conclusion, we comprehensively observed the temporal and spatial evolution of various functional neurons. Our results will assist with understanding how demyelination affects neurons during CPZ-induced demyelination and provide novel information for neuroprotection in myelin regeneration and demyelinating diseases.NEW & NOTEWORTHY Our results further indicate temporal and spatial evolution of various functional neurons during the demyelination in a cuprizone (CPZ)-induced mouse model, which mainly occur 4-6 wk after CPZ feeding. At the same time, the axonal compartment is damaged and, consequently, neuronal death occurs, while glutamate neurons are lost obviously. The astrocyte-mediated glutamate reuptake could protect the neurons from the excitatory effects of glutamate.


Assuntos
Astrócitos , Cuprizona/farmacologia , Doenças Desmielinizantes , Ácido Glutâmico/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Bainha de Mielina , Neurônios , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Cuprizona/administração & dosagem , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Inibidores da Monoaminoxidase/administração & dosagem , Esclerose Múltipla/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia
3.
Neural Regen Res ; 18(5): 947-954, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254973

RESUMO

Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.

4.
Neurotherapeutics ; 18(1): 488-502, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140235

RESUMO

Astrocytes redifferentiate into oligodendrogenesis, raising the possibility that astrocytes may be a potential target in the treatment of adult demyelinated lesion. Upon the basis of the improvement of behavior abnormality and demyelination by ethyl pyruvate (EP) treatment, we further explored whether EP affects the function of astrocytes, especially the transdifferentiation of astrocytes into oligodendrogenesis. The results showed that EP treatment increased the accumulation of astrocytes in myelin sheath and promoted the phagocytosis of myelin debris by astrocytes in vivo and in vitro. At the same time, EP treatment induced astrocytes to upregulate the expression of CNTF and BDNF in the corpus callosum and striatum as well as cultured astrocytes, accompanied by increased expression of nestin, Sox2, and ß-catenin and decreased expression of Notch1 by astrocytes. As a result, EP treatment effectively promoted the generation of NG2+ and PDGF-Ra+ oligodendrocyte precursor cells (OPCs) that, in part, express astrocyte marker GFAP. Further confirmation was performed by intracerebral injection of primary astrocytes labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). As expected, NG2+ OPCs expressing CFSE and Sox2 were elevated in the corpus callosum of mice treated with EP following transplantation, revealing that EP can convert astrocytes into myelinating cells. Our results indicate the possibility that EP lead to effective myelin repair in patients suffering from myelination deficit.Graphical Abstract The diagram of EP action for promoting myelin regeneration in CPZ model. EP promoted migration and enrichment of astrocytes to demyelinated tissue and induced astrocytes to express neurotrophic CNTF and BDNF as well as translation factor nestin, Sox2, and ß-catenin, which should contribute to astrocytes to differentiate of oligodendrogenesis. At the same time, EP promoted astrocytes to phagocytized myelin debris for removing the harmful substances of myelin regeneration.


Assuntos
Astrócitos/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Cuprizona/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Oligodendroglia/efeitos dos fármacos , Piruvatos/farmacologia , Animais , Modelos Animais de Doenças , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Receptores de Interleucina-1
5.
Neurotox Res ; 37(3): 587-601, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31721051

RESUMO

The cuprizone (CPZ)-induced demyelination is a relatively reproducible animal model and has been extremely useful for identifying the specific cellular and molecular signals that regulate oligodendrocyte survival and efficiency of oligodendrogenesis and remyelination. Here, we reported the temporal and spatial dynamics of astroglial reaction and immune response in CPZ-induced demyelinating model. CPZ did not induce significant microglia and astrocyte reaction after 2 weeks of feeding. After 4-6 weeks of CPZ feeding, microglia and astrocytes were markedly migrated and accumulated in myelin sheath. Simultaneously, the expression of tight junction protein ZO-1 was declined and the infiltration of CD4+IFNγ+ and CD4+IL-17+ T cells was increased in the brain, accompanied by increased production of IFN-γ and IL-17 in the extract of brain. However, the levels of IFN-γ and IL-17 were reduced, while IL-6 and TNF-α were elevated in the supernatant of splenocytes. At the 4th and 6th weeks of feeding, CPZ caused astrocyte activation and upregulated the expression of BDNF, CNTF, and IGF-II, providing a neurotrophic microenvironment in the brain. At this stage, NG2+ and PDGF-Rα+ oligodendroglia progenitor cells were enhanced in the corpus callosum, but the myelin sheath is still severely lost. Therefore, targeting microglia to improve the inflammatory microenvironment should contribute to the remyelination.


Assuntos
Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/imunologia , Animais , Astrócitos/imunologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/imunologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
6.
Int Immunopharmacol ; 77: 105929, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677497

RESUMO

Ethyl pyruvate (EP), a simple derivative of the endogenous energy substrate pyruvate, provides strong anti-inflammatory and anti-oxidative properties. but its role in remyelination has not been explored. In this study, EP efficiently improved the behavioural performance and histological demyelination in cuprizone (CPZ)-induced mouse model. In terms of action, EP treatment enhanced microglia migration, increased the phagocytosis of myelin debris by BV2 microglia and primary microglia, induced cell proliferation and subsequent cell death. At the same time, EP induced microglia to exhibit M2 phenotype, representing decreased iNOS/TNF-α and increased Arg-1/IL-10. In addition, EP decreased microglia enrichment in myelin sheath, and declined TLR4/p-NF-kb/p65 and IL-1ß and IL-6, inhibiting microglia-mediated neuroinflammation. As a result, EP treatment promoted the generation of oligodendrocyte progenitor cells (OPCs) and the differentiation from maturation to mature oligodendrocytes, which may be related to the up-regulation of Sox2. Given these data, we provided the proof-of-experiment that EP should be beneficial in multiple sclerosis or demyelinating lesions. However, further studies on the possibility to use EP as therapeutic application are warranted.


Assuntos
Doenças Desmielinizantes/tratamento farmacológico , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Piruvatos/uso terapêutico , Remielinização/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cuprizona , Citocinas/imunologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/imunologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Piruvatos/farmacologia
7.
Front Cell Neurosci ; 13: 572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969806

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disorder in the central nervous system (CNS), in which remyelination failure results in persistent neurologic impairment. Ginkgolide B (GB), a major terpene lactone and active component of Ginkgo biloba, has neuroprotective effects in several models of neurological diseases. Here, our results show, by using an in vivo cuprizone (CPZ)-induced demyelinating model, administration of GB improved behavior abnormalities, promoted myelin generation, and significantly regulated the dynamic balance of microglia and astrocytes by inhibiting the expression of TLR4, NF-κB and iNOS as well as IL-1ß and TNF-α, and up-regulating the expression of Arg-1 and neurotrophic factors. GB treatment also induced the generation of oligodendrocyte precursor cells (OPCs). In vitro cell experiments yielded the results similar to those of the in vivo model. The dynamic balance by decreasing microglia-mediated neuroinflammation and promoting astrocyte-derived neurotrophic factors should contribute to endogenous remyelination. Despite GB treatment may represent a novel strategy for promoting myelin recovery, the precise mechanism of GB targeting microglia and astrocytes remains to be further explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA