RESUMO
Cultivation substrate water status is of great importance to the production of netted muskmelon (Cucumis melo L. var. reticulatus Naud.). A prediction model for the substrate water status would be beneficial in irrigation schedule guidance. In this study, the machine learning random forest model was used to forecast plant substrate water status given the phenotypic traits throughout the muskmelon growing season. Here, two varieties of netted muskmelon, "Wanglu" and "Arus", were planted in a greenhouse under four substrate water treatments and their phenotypic traits were measured by taking the images within the visible and near-infrared spectrums, respectively. Results showed that a simplified model outperformed the original model in forecasting speed, while it only uses the top five most significant contribution traits. The forecast accuracy reached up to 77.60%, 94.37%, and 90.01% for seedling, vine elongation, and fruit growth stages, respectively. Combining the imaging phenotypic traits and machine learning technique would provide a robust forecast of water status around the plant root zones.
RESUMO
In plants, alternative splicing (AS) is markedly induced in response to environmental stresses, but it is unclear why plants generate multiple transcripts under stress conditions. In this study, RNA-seq was performed to identify AS events in cucumber seedlings grown under different light intensities. We identified a novel transcript of the gibberellin (GA)-deactivating enzyme Gibberellin 2-beta-dioxygenase 8 (CsGA2ox8). Compared with canonical CsGA2ox8.1, the CsGA2ox8.2 isoform presented intron retention between the second and third exons. Functional analysis proved that the transcript of CsGA2ox8.1 but not CsGA2ox8.2 played a role in the deactivation of bioactive GAs. Moreover, expression analysis demonstrated that both transcripts were upregulated by increased light intensity, but the expression level of CsGA2ox8.1 increased slowly when the light intensity was >400 µmol·m-2·s-1 PPFD (photosynthetic photon flux density), while the CsGA2ox8.2 transcript levels increased rapidly when the light intensity was >200 µmol·m-2·s-1 PPFD. Our findings provide evidence that plants might finely tune their GA levels by buffering against the normal transcripts of CsGA2ox8 through AS.