Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 128(16): 2068-2082, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27488350

RESUMO

Reestablishment of competent regulatory pathways has emerged as a strategy to reduce the severity of graft-versus-host disease (GVHD), and recalibrate the effector and regulatory arms of the immune system. However, clinically feasible, cost-effective strategies that do not require extensive ex vivo cellular manipulation have remained elusive. In the current study, we demonstrate that inhibition of the interleukin-27p28 (IL-27p28) signaling pathway through antibody blockade or genetic ablation prevented lethal GVHD in multiple murine transplant models. Moreover, protection from GVHD was attributable to augmented global reconstitution of CD4+ natural regulatory T cells (nTregs), CD4+ induced Tregs (iTregs), and CD8+ iTregs, and was more potent than temporally concordant blockade of IL-6 signaling. Inhibition of IL-27p28 also enhanced the suppressive capacity of adoptively transferred CD4+ nTregs by increasing the stability of Foxp3 expression. Notably, blockade of IL-27p28 signaling reduced T-cell-derived-IL-10 production in conventional T cells; however, there was no corresponding effect in CD4+ or CD8+ Tregs, indicating that IL-27 inhibition had differential effects on IL-10 production and preserved a mechanistic pathway by which Tregs are known to suppress GVHD. Targeting of IL-27 therefore represents a novel strategy for the in vivo expansion of Tregs and subsequent prevention of GVHD without the requirement for ex vivo cellular manipulation, and provides additional support for the critical proinflammatory role that members of the IL-6 and IL-12 cytokine families play in GVHD biology.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Interleucinas/antagonistas & inibidores , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/genética , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
2.
Blood Adv ; 6(9): 2791-2804, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35015822

RESUMO

Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft-versus-host disease (GVHD). CD4+ T cells that produce granulocyte-macrophage colony stimulating factor (GM-CSF) have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T-cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if a unique CD4+ GM-CSF+ subset exists that differs from other defined T helper subtypes. Using single-cell RNA sequencing analysis (scRNAseq), we identified two CD4+ GM-CSF+ T-cell populations that arose during GVHD and were distinguishable according to the presence or absence of interferon-γ (IFN-γ) coexpression. CD4+ GM-CSF+ IFN-γ- T cells, which emerged preferentially in the colon, had a distinct transcriptional profile, used unique gene regulatory networks, and possessed a nonoverlapping T-cell receptor repertoire compared with CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T-cell populations in the colon. Functionally, this CD4+ GM-CSF+ T-cell population contributed to pathologic damage in the GI tract that was critically dependent on signaling through the interleukin-17 (IL-7) receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic T helper subtype GM-CSF+ subset that mediates immunopathology.


Assuntos
Doença Enxerto-Hospedeiro , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Linfócitos T CD4-Positivos , Linhagem da Célula , Citocinas , Trato Gastrointestinal , Doença Enxerto-Hospedeiro/etiologia , Humanos , Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA