Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 186, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562800

RESUMO

Immune checkpoint inhibitors (ICIs) have made important breakthrough in anti-tumor therapy, however, no single biomarker can accurately predict their efficacy. Studies have found that tumor microenvironment is a key factor for determining the response to ICI therapy. Cytokine receptor 3 (C-X-C Motif Chemokine Receptor 3, CXCR3) pathway has been reported to play an important role in the migration, activation, and response of immune cells. We analyzed survival data, genomics, and clinical data from patients with metastatic urothelial carcinoma (mUC) who received ICI treatment to explore the relationship between CXCR3 pathway activation and the effectiveness of ICIs. The Cancer Genome Atlas Bladder Urothelial Carcinoma cohort and six other cohorts receiving ICI treatment were used for mechanism exploration and validation. In the ICI cohort, we performed univariate and multivariate COX analyses and discovered that patients in the CXCR3-high group were more sensitive to ICI treatment. A Kaplan-Meier analysis demonstrated that patients in the high CXCR3-high group had a better prognosis than those in the CXCR3-low group (P = 0.0001, Hazard Ratio = 0.56; 95% CI 0.42-0.75). CIBERSORT analysis found that mUC patients in the CXCR3-high group had higher levels of activated CD8+ T cells, M1 macrophages, and activated NK cells and less regulatory T cell (Treg) infiltration. Immunogenicity analysis showed the CXCR3-high group had higher tumor neoantigen burden (TNB). Our study suggests that CXCR3 pathway activation may be a novel predictive biomarker for the effectiveness of immunotherapy in mUC patients.

2.
Front Cell Dev Biol ; 10: 757137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223828

RESUMO

A large proportion of anti-tumor immunity research is focused on major histocompatibility complex class I (MHC-I) molecules and CD8+ T cells. Despite mounting evidence has shown that CD4+ T cells play a major role in anti-tumor immunity, the role of the MHC-II molecules in tumor immunotherapy has not been thoroughly researched and reported. In this study, we defined a MHC-II signature for the first time by calculating the enrichment score of MHC-II protein binding pathway with a single sample gene set enrichment analysis (ssGSEA) algorithm. To evaluate and validate the predictive value of the MHC class II (MHC-II) signature, we collected the transcriptome, mutation data and matched clinical data of bladder cancer patients from IMvigor210, The Cancer Genome Atlas (TCGA) databases and Gene Expression Omnibus (GEO) databases. Comprehensive analyses of immunome, transcriptome, metabolome, genome and drugome were performed in order to determine the association of MHC-II signature and tumor immunotherapy. We identified that MHC-II signature is an independent and favorable predictor of immune response and the prognosis of bladder cancer treated with immune checkpoint inhibitors (ICIs), one that may be superior to tumor mutation burden. MHC-II signature was significantly associated with increased immune cell infiltration and levels of immune-related gene expression signatures. Additionally, transcriptomic analysis showed immune activation in the high-MHC-II signature subgroup, whereas it showed fatty acid metabolism and glucuronidation in the low-MHC-II signature subgroup. Moreover, exploration of corresponding genomic profiles highlighted the significance of tumor protein p53 (TP53) and fibroblast growth factor receptor 3 (FGFR3) alterations. Our results also allowed for the identification of candidate compounds for combined immunotherapy treatment that may be beneficial for patients with bladder cancer and a high MHC-II signature. In conclusion, this study provides a new perspective on MHC-II signature, as an independent and favorable predictor of immune response and prognosis of bladder cancer treated with ICIs.

3.
Front Mol Biosci ; 8: 629330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113648

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have shown remarkable success in treating skin cutaneous melanoma (SKCM); however, the response to treatment varies greatly between patients. Considering that the efficacy of ICI treatment is influenced by many factors, we selected the Fibrosheath interacting protein 2 (FSIP2) gene and systematically analyzed its potential to predict the efficacy of ICI treatment. METHODS: Patient data were collected from an ICI treatment cohort (n = 120) and a The Cancer Genome Atlas (TCGA)-SKCM cohort (n = 467). The data were divided into an FSIP2-mutant (MT) group and FSIP2-wild-type (WT) group according to FSIP2 mutation status. In this study, we analyzed the patients' overall survival rate, tumor mutational burden (TMB), neoantigen load (NAL), copy number variation (CNV), cell infiltration data and immune-related genes. We used gene set enrichment analysis (GSEA) to delineate biological pathways and processes associated with the efficacy of immunotherapy. RESULTS: The efficacy of ICI treatment of SKCM patients with FSIP2 mutation was significantly better than that of patients without FSIP2 mutation. The patients in the FSIP2-MT group had higher tumor immunogenicity and lower regulatory T cell (Treg) infiltration. Results of GSEA showed that pathways related to tumor progression (MAPK and FGFR), immunomodulation, and IL-2 synthesis inhibition were significantly downregulated in the FSIP2-MT group. CONCLUSION: Our research suggests that the FSIP2 gene has the potential to predict the efficacy of ICI treatment. The high tumor immunogenicity and low Treg levels observed may be closely related to the fact that patients with FSIP2-MT can benefit from ICI treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA