RESUMO
BACKGROUND: In pancreatic cancer, methods to predict early recurrence (ER) and identify patients at increased risk of relapse are urgently required. PURPOSE: To develop a radiomic nomogram based on MR radiomics to stratify patients preoperatively and potentially improve clinical practice. STUDY TYPE: Retrospective. POPULATION: We enrolled 303 patients from two medical centers. Patients with a disease-free survival ≤12 months were assigned as the ER group (n = 130). Patients from the first medical center were divided into a training cohort (n = 123) and an internal validation cohort (n = 54). Patients from the second medical center were used as the external independent validation cohort (n = 126). FIELD STRENGTH/SEQUENCE: 3.0T axial T1 -weighted (T1 -w), T2 -weighted (T2 -w), contrast-enhanced T1 -weighted (CET1 -w). ASSESSMENT: ER was confirmed via imaging studies as MRI or CT. Risk factors, including clinical stage, CA19-9, and radiomic-related features of ER were assessed. In addition, to determine the intra- and interobserver reproducibility of radiomic features extraction, the intra- and interclass correlation coefficients (ICC) were calculated. STATISTICAL TESTS: The area under the receiver-operator characteristic (ROC) curve (AUC) was used to evaluate the predictive accuracy of the radiomic signature in both the training and test groups. The results of decision curve analysis (DCA) indicated that the radiomic nomogram achieved the most net benefit. RESULTS: The AUC values of ER evaluation for the radiomics signature were 0.80 (training cohort), 0.81 (internal validation cohort), and 0.78 (external validation cohort). Multivariate logistic analysis identified the radiomic signature, CA19-9 level, and clinical stage as independent parameters of ER. A radiomic nomogram was then developed incorporating the CA19-9 level and clinical stage. The AUC values for ER risk evaluation using the radiomic nomogram were 0.87 (training cohort), 0.88 (internal validation cohort), and 0.85 (external validation cohort). DATA CONCLUSION: The radiomic nomogram can effectively evaluate ER risks in patients with resectable pancreatic cancer preoperatively, which could potentially improve treatment strategies and facilitate personalized therapy in pancreatic cancer. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2020;52:231-245.
Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias Pancreáticas , Feminino , Humanos , Masculino , Nomogramas , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
Despite its crucial role in interventional therapies for liver malignancy, cone-beam computed tomography (CBCT) has not yet been fully integrated into clinical practice due to several complicating factors, including nonstandardized operations and limited recognition of CBCT among interventional radiologists. In response, the Chinese College of Interventionalists has released a consensus statement aimed at standardizing and promoting the application of CBCT in the interventional therapies for liver malignancy. This statement summarizes CBCT scanning techniques, and operational standards, and highlights its potential applications in clinical practice.
RESUMO
AIM: To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). METHODS: The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. RESULTS: Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. CONCLUSION: Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases.