Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 35(7): 441-452, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29082591

RESUMO

Although oxygen concentrations affect the growth and function of mesenchymal stem cells (MSCs), the impact of hypoxia on osteoblastic differentiation is not understood. Likewise, the effect of hypoxia-induced epigenetic changes on osteoblastic differentiation of MSCs is unknown. The aim of this study was to examine the in vitro hypoxic response of human periosteum-derived cells (hPDCs). Hypoxia resulted in greater proliferation of hPDCs as compared with those cultured in normoxia. Further, hypoxic conditions yielded decreased expression of apoptosis- and senescence-associated genes by hPDCs. Osteoblast phenotypes of hPDCS were suppressed by hypoxia, as suggested by alkaline phosphatase activity, alizarin red-S-positive mineralization, and mRNA expression of osteoblast-related genes. Chromatin immunoprecipitation assays showed an increased presence of H3K27me3, trimethylation of lysine 27 on histone H3, on the promoter region of bone morphogenetic protein-2. In addition, mRNA expression of histone lysine demethylase 6B (KDM6B) by hPDCs was significantly decreased in hypoxic conditions. Our results suggest that an increased level of H3K27me3 on the promoter region of bone morphogenetic protein-2, in combination with downregulation of KDM6B activity, is involved in the suppression of osteogenic phenotypes of hPDCs cultured in hypoxic conditions. Although oxygen tension plays an important role in the viability and maintenance of MSCs in an undifferentiated state, the effect of hypoxia on osteoblastic differentiation of MSCs remains controversial. In addition, evidence regarding the importance of epigenetics in regulating MSCs has been limited. This study was to examine the role hypoxia on osteoblastic differentiation of hPDCs, and we examined whether histone methylation is involved in the observed effect of hypoxia on osteogenic differentiation of hPDCs.


Assuntos
Hipóxia Celular , Histonas/metabolismo , Osteoblastos/metabolismo , Periósteo/citologia , Apoptose , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Senescência Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Osteoblastos/citologia , Osteogênese , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Neurosci ; 27(16): 4472-81, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442832

RESUMO

Many diseases of the eye such as retinoblastoma, diabetic retinopathy, and retinopathy of prematurity are associated with blood-retinal barrier (BRB) dysfunction. Identifying the factors that contribute to BRB formation during human eye development and maintenance could provide insights into such diseases. Here we show that A-kinase anchor protein 12 (AKAP12) induces BRB formation by increasing angiopoietin-1 and decreasing vascular endothelial growth factor (VEGF) levels in astrocytes. We reveal that AKAP12 downregulates the level of hypoxia-inducible factor-1alpha (HIF-1alpha) protein by enhancing the interaction of HIF-1alpha with pVHL (von Hippel-Lindau tumor suppressor protein) and PHD2 (prolyl hydroxylase 2). Conditioned media from AKAP12-overexpressing astrocytes induced barriergenesis by upregulating the expression of tight junction proteins in human retina microvascular endothelial cells (HRMECs). Compared with the retina during BRB maturation, AKAP12 expression in retinoblastoma patient tissue was markedly reduced whereas that of VEGF was increased. These findings suggest that AKAP12 may induce BRB formation through antiangiogenesis and barriergenesis in the developing human eye and that defects in this mechanism can lead to a loss of tight junction proteins and contribute to the development of retinal pathologies such as retinoblastoma.


Assuntos
Barreira Hematorretiniana/fisiologia , Proteínas de Ciclo Celular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Junções Íntimas/metabolismo , Proteínas de Ancoragem à Quinase A , Angiopoietina-1/metabolismo , Barreira Hematorretiniana/embriologia , Células Cultivadas , Regulação para Baixo , Humanos , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cancer Lett ; 254(1): 111-8, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17442483

RESUMO

AKAP12 (A-Kinase anchoring protein 12) is a protein kinase C substrate and a potential tumor suppressor. AKAP12 is down-regulated by several oncogenes and strongly suppressed in various cancers including prostate, ovarian and breast cancers. AKAP12 acts as a regulator of mitogenesis by anchoring key signal proteins such as PKA, PKC, and cyclins. In this study, AKAP12 was found to suppress tumor cell viability by inducing apoptosis via caspase-3 in HT1080 cells. This AKAP12-induced apoptosis was associated with a decreased expression of Bcl-2 and increased expression of Bax. Moreover, AKAP12-transfectant strongly induced the expression of Cip1/p21 and Kip1/p27, but resulted in a decrease in cyclin D1 involved in G(1) progression. Accordingly, these results suggest that AKAP12 may play an important role in tumor growth suppression by inducing apoptosis with the regulation of multiple molecules in the cell cycle progression.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Proteínas de Ciclo Celular/fisiologia , Ciclina D1/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ancoragem à Quinase A , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27 , Fragmentação do DNA , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Citometria de Fluxo , Fase G1/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia de Fluorescência , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
J Biol Chem ; 282(18): 13672-9, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17360716

RESUMO

During mammalian embryogenesis, the early embryo grows in a relatively hypoxic environment due to a restricted supply of oxygen. The molecular mechanisms underlying modulation of self-renewal and differentiation of mouse embryonic stem cells (mESCs) under such hypoxic conditions remain to be established. Here, we show that hypoxia inhibits mESC self-renewal and induces early differentiation in vitro, even in the presence of leukemia inhibitory factor (LIF). These effects are mediated by down-regulation of the LIF-STAT3 signaling pathway. Under conditions of hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) suppresses transcription of LIF-specific receptor (LIFR) by directly binding to the reverse hypoxia-responsive element located in the LIFR promoter. Ectopic expression and small interference RNA knockdown of HIF-1alpha verified the inhibitory effect on LIFR transcription. Our findings collectively suggest that hypoxia-induced in vitro differentiation of mESCs is triggered, at least in part, by the HIF-1alpha-mediated suppression of LIF-STAT3 signaling.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator Inibidor de Leucemia/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Fator Inibidor de Leucemia/genética , Camundongos , RNA Interferente Pequeno/genética , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Elementos de Resposta/fisiologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA