Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(21): e2200311, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35491522

RESUMO

Peripheral nerve mapping tools with higher spatial resolution are needed to advance systems neuroscience, and potentially provide a closed-loop biomarker in neuromodulation applications. Two critical challenges of microscale neural interfaces are 1) how to apply them to small peripheral nerves, and 2) how to minimize chronic reactivity. A flexible microneedle nerve array (MINA) is developed, which is the first high-density penetrating electrode array made with axon-sized silicon microneedles embedded in low-modulus thin silicone. The design, fabrication, acute recording, and chronic reactivity to an implanted MINA, are presented. Distinctive units are identified in the rat peroneal nerve. The authors also demonstrate a long-term, cuff-free, and suture-free fixation manner using rose bengal as a light-activated adhesive for two time-points. The tissue response is investigated at 1-week and 6-week time-points, including two sham groups and two MINA-implanted groups. These conditions are quantified in the left vagus nerve of rats using histomorphometry. Micro computed tomography (micro-CT) is added to visualize and quantify tissue encapsulation around the implant. MINA demonstrates a reduction in encapsulation thickness over previously quantified interfascicular methods. Future challenges include techniques for precise insertion of the microneedle electrodes and demonstrating long-term recording.


Assuntos
Axônios , Nervo Isquiático , Animais , Estimulação Elétrica , Eletrodos Implantados , Ratos , Nervo Isquiático/fisiologia , Microtomografia por Raio-X
2.
Development ; 145(16)2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166318

RESUMO

The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level.


Assuntos
Linhagem da Célula/fisiologia , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rim/embriologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Feto/citologia , Perfilação da Expressão Gênica , Humanos , Rim/citologia , Camundongos , Células-Tronco/citologia
3.
Anal Chem ; 92(11): 7717-7724, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32427465

RESUMO

Functional identification of cancer stem-like cells (CSCs) is an established method to identify and study this cancer subpopulation critical for cancer progression and metastasis. The method is based on the unique capability of single CSCs to survive and grow to tumorspheres in harsh suspension culture environment. Recent advances in microfluidic technology have enabled isolating and culturing thousands of single cells on a chip. However, tumorsphere assay takes a relatively long period of time, limiting the throughput of this assay. In this work, we incorporated machine learning with single-cell analysis to expedite tumorsphere assay. We collected 1,710 single-cell events as the database and trained a convolutional neural network model that predicts whether a single cell could grow to a tumorsphere on Day 14 based on its Day 4 image. With this future-telling model, we precisely estimated the sphere formation rate of SUM159 breast cancer cells to be 17.8% based on Day 4 images. The estimation was close to the ground truth of 17.6% on Day 14. The preliminary work demonstrates not only the feasibility to significantly accelerate tumorsphere assay but also a synergistic combination between single-cell analysis with machine learning, which can be applied to many other biomedical applications.


Assuntos
Processamento de Imagem Assistida por Computador , Células-Tronco Neoplásicas/patologia , Redes Neurais de Computação , Análise de Célula Única , Feminino , Humanos , Células Tumorais Cultivadas
4.
Anal Chem ; 91(21): 14093-14100, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31601098

RESUMO

Despite recent advances in cancer treatment, developing better therapeutic reagents remains an essential task for oncologists. To accurately characterize drug efficacy, 3D cell culture holds great promise as opposed to conventional 2D monolayer culture. Due to the advantages of cell manipulation in high-throughput, various microfluidic platforms have been developed for drug screening with 3D models. However, the dissemination of microfluidic technology is overall slow, and one missing part is fast and low-cost assay readout. In this work, we developed a microfluidic chip forming 1920 tumor spheres for drug testing, and the platform is supported by automatic image collection and cropping for analysis. Using conventional LIVE/DEAD staining as the ground truth of sphere viability, we trained a convolutional neural network to estimate sphere viability based on its bright-field image. The estimated sphere viability was highly correlated with the ground truth (R-value > 0.84). In this manner, we precisely estimated drug efficacy of three chemotherapy drugs, doxorubicin, oxaliplatin, and irinotecan. We also cross-validated the trained networks of doxorubicin and oxaliplatin and found common bright-field morphological features indicating sphere viability. The discovery suggests the potential to train a generic network using some representative drugs and apply it to many different drugs in large-scale screening. The bright-field estimation of sphere viability saves LIVE/DEAD staining reagent cost and fluorescence imaging time. More importantly, the presented method allows viability estimation in a label-free and nondestructive manner. In short, with image processing and machine learning, the presented method provides a fast, low-cost, and label-free method to assess tumor sphere viability for large-scale drug screening in microfluidics.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Técnicas Analíticas Microfluídicas , Redes Neurais de Computação , Imagem Óptica , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Imagem Óptica/instrumentação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Analyst ; 144(24): 7296-7309, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710321

RESUMO

Considerable evidence suggests breast cancer metastasis arises from cells undergoing epithelial-to-mesenchymal-transition (EMT) and cancer stem-like cells (CSCs). Using a microfluidic device that enriches migratory breast cancer cells with enhanced capacity for tumor formation and metastasis, we identified genes differentially expressed in migratory cells by high-throughput single-cell RNA-sequencing. Migratory cells exhibited overall signatures of EMT and CSCs with variable expression of marker genes, and they retained expression profiles of EMT over time. With single-cell resolution, we discovered intermediate EMT states and distinct epithelial and mesenchymal sub-populations of migratory cells, indicating breast cancer cells can migrate rapidly while retaining an epithelial state. Migratory cells showed differential profiles for regulators of oxidative stress, mitochondrial morphology, and the proteasome, revealing potential vulnerabilities and unexpected consequences of drugs. We also identified novel genes correlated with cell migration and outcomes in breast cancer as potential prognostic biomarkers and therapeutic targets to block migratory cells in metastasis.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/genética , Genes Neoplásicos , Metástase Neoplásica/genética , RNA/análise , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células-Tronco Neoplásicas/química , Análise de Célula Única/métodos , Transcriptoma
6.
Small ; 14(42): e1703617, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30239130

RESUMO

Cancer heterogeneity is a notorious hallmark of this disease, and it is desirable to tailor effective treatments for each individual patient. Drug combinations have been widely accepted in cancer treatment for better therapeutic efficacy as compared to a single compound. However, experimental complexity and cost grow exponentially with more target compounds under investigation. The primary challenge remains to efficiently perform a large-scale drug combination screening using a small number of patient primary samples for testing. Here, a scalable, easy-to-use, high-throughput drug combination screening scheme is reported, which has the potential of screening all possible pairwise drug combinations for arbitrary number of drugs with multiple logarithmic mixing ratios. A "Christmas tree mixer" structure is introduced to generate a logarithmic concentration mixing ratio between drug pairs, providing a large drug concentration range for screening. A three-layer structure design and special inlets arrangement facilitate simple drug loading process. As a proof of concept, an 8-drug combination chip is implemented, which is capable of screening 172 different treatment conditions over 1032 3D cancer spheroids on a single chip. Using both cancer cell lines and patient-derived cancer cells, effective drug combination screening is demonstrated for precision medicine.


Assuntos
Medicina de Precisão/métodos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microfluídica/métodos , Esferoides Celulares
7.
Proc Natl Acad Sci U S A ; 112(50): E6882-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621735

RESUMO

Whether human cancer follows a hierarchical or stochastic model of differentiation is controversial. Furthermore, the factors that regulate cancer stem-like cell (CSC) differentiation potential are largely unknown. We used a novel microfluidic single-cell culture method to directly observe the differentiation capacity of four heterogeneous ovarian cancer cell populations defined by the expression of the CSC markers aldehyde dehydrogenase (ALDH) and CD133. We evaluated 3,692 progeny from 2,833 cells. We found that only ALDH(+)CD133(+) cells could generate all four ALDH(+/-)CD133(+/-) cell populations and identified a clear branched differentiation hierarchy. We also observed a single putative stochastic event. Within the hierarchy of cells, bone morphologenetic protein 2 (BMP2) is preferentially expressed in ALDH(-)CD133(-) cells. BMP2 promotes ALDH(+)CD133(+) cell expansion while suppressing the proliferation of ALDH(-)CD133(-) cells. As such, BMP2 suppressed bulk cancer cell growth in vitro but increased tumor initiation rates, tumor growth, and chemotherapy resistance in vivo whereas BMP2 knockdown reduced CSC numbers, in vivo growth, and chemoresistance. These data suggest a hierarchical differentiation pattern in which BMP2 acts as a feedback mechanism promoting ovarian CSC expansion and suppressing progenitor proliferation. These results explain why BMP2 suppresses growth in vitro and promotes growth in vivo. Together, our results support BMP2 as a therapeutic target in ovarian cancer.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Neoplasias Ovarianas/patologia , Antígeno AC133 , Aldeído Desidrogenase/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Proteína Morfogenética Óssea 2/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Humanos , Microfluídica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Peptídeos/metabolismo
8.
Sensors (Basel) ; 18(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342103

RESUMO

This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.


Assuntos
Tecnologia sem Fio , Animais , Encéfalo , Desenho de Equipamento , Primatas
9.
Analyst ; 139(24): 6371-8, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25118341

RESUMO

Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial-temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we have presented a cell-cell interaction microfluidic platform that can accurately control the co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We have verified that the electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we have performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays were successfully performed which showed that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells.


Assuntos
Comunicação Celular , Técnicas de Cocultura/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Eletrólitos/química , Desenho de Equipamento , Humanos , Masculino , Camundongos , Mioblastos/citologia , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/patologia
10.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712092

RESUMO

Flexible intracortical neural probes have drawn attention for their enhanced longevity in high-resolution neural recordings due to reduced tissue reaction. However, the conventional monolithic fabrication approach has met significant challenges in: (i) scaling the number of recording sites for electrophysiology; (ii) integrating of other physiological sensing and modulation; and (iii) configuring into three-dimensional (3D) shapes for multi-sided electrode arrays. We report an innovative self-assembly technology that allows for implementing flexible origami neural probes as an effective alternative to overcome these challenges. By using magnetic-field-assisted hybrid self-assembly, multiple probes with various modalities can be stacked on top of each other with precise alignment. Using this approach, we demonstrated a multifunctional device with scalable high-density recording sites, dopamine sensors and a temperature sensor integrated on a single flexible probe. Simultaneous large-scale, high-spatial-resolution electrophysiology was demonstrated along with local temperature sensing and dopamine concentration monitoring. A high-density 3D origami probe was assembled by wrapping planar probes around a thin fiber in a diameter of 80∼105 µm using optimal foldable design and capillary force. Directional optogenetic modulation could be achieved with illumination from the neuron-sized micro-LEDs (µLEDs) integrated on the surface of 3D origami probes. We could identify angular heterogeneous single-unit signals and neural connectivity 360° surrounding the probe. The probe longevity was validated by chronic recordings of 64-channel stacked probes in behaving mice for up to 140 days. With the modular, customizable assembly technologies presented, we demonstrated a novel and highly flexible solution to accommodate multifunctional integration, channel scaling, and 3D array configuration.

11.
IEEE Trans Biomed Circuits Syst ; 17(4): 741-753, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490369

RESUMO

We report a power-efficient analog front-end integrated circuit (IC) for multi-channel, dual-band subcortical recordings. In order to achieve high-resolution multi-channel recordings with low power consumption, we implemented an incremental ΔΣ ADC (IADC) with a dynamic zoom-and-track scheme. This scheme continuously tracks local field potential (LFP) and adaptively adjusts the input dynamic range (DR) into a zoomed sub-LFP range to resolve tiny action potentials. Thanks to the reduced DR, the oversampling rate of the IADC can be reduced by 64.3% compared to the conventional approach, leading to significant power reduction. In addition, dual-band recording can be easily attained because the scheme continuously tracks LFPs without additional on-chip hardware. A prototype four-channel front-end IC has been fabricated in 180 nm standard CMOS processes. The IADC achieved 11.3-bit ENOB at 6.8 µW, resulting in the best Walden and SNDR FoMs, 107.9 fJ/c-s and 162.1 dB, respectively, among two different comparison groups: the IADCs reported up to date in the state-of-the-art neural recording front-ends; and the recent brain recording ADCs using similar zooming or tracking techniques to this work. The intrinsic dual-band recording feature reduces the post-processing FPGA resources for subcortical signal band separation by >45.8%. The front-end IC with the zoom-and-track IADC showed an NEF of 5.9 with input-referred noise of 8.2 µVrms, sufficient for subcortical recording. The performance of the whole front-end IC was successfully validated through in vivo animal experiments.


Assuntos
Encéfalo , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/fisiologia , Potenciais de Ação/fisiologia , Amplificadores Eletrônicos , Desenho de Equipamento , Processamento de Sinais Assistido por Computador
12.
Curr Biol ; 33(9): 1689-1703.e5, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023753

RESUMO

Recurrent connectivity between excitatory neurons and the strength of feedback from inhibitory neurons are critical determinants of the dynamics and computational properties of neuronal circuits. Toward a better understanding of these circuit properties in regions CA1 and CA3 of the hippocampus, we performed optogenetic manipulations combined with large-scale unit recordings in rats under anesthesia and in quiet waking, using photoinhibition and photoexcitation with different light-sensitive opsins. In both regions, we saw striking paradoxical responses: subsets of cells increased firing during photoinhibition, while other cells decreased firing during photoexcitation. These paradoxical responses were more prominent in CA3 than in CA1, but, notably, CA1 interneurons showed increased firing in response to photoinhibition of CA3. These observations were recapitulated in simulations where we modeled both CA1 and CA3 as inhibition-stabilized networks in which strong recurrent excitation is balanced by feedback inhibition. To directly test the inhibition-stabilized model, we performed large-scale photoinhibition directed at (GAD-Cre) inhibitory cells and found that interneurons in both regions increased firing when photoinhibited, as predicted. Our results highlight the often-paradoxical circuit dynamics that are evidenced during optogenetic manipulations and indicate that, contrary to long-standing dogma, both CA1 and CA3 hippocampal regions display strongly recurrent excitation, which is stabilized through inhibition.


Assuntos
Região CA1 Hipocampal , Região CA3 Hipocampal , Ratos , Animais , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Optogenética , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
13.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798252

RESUMO

Optogenetics are a powerful tool for testing how a neural circuit influences neural activity, cognition, and behavior. Accordingly, the number of studies employing optogenetic perturbation has grown exponentially over the last decade. However, recent studies have highlighted that the impact of optogenetic stimulation/silencing can vary depending on the construct used, the local microcircuit connectivity, extent/power of illumination, and neuron types perturbed. Despite these caveats, the majority of studies employ optogenetics without simultaneously recording neural activity in the circuit that is being perturbed. This dearth of simultaneously recorded neural data is due in part to technical difficulties in combining optogenetics and extracellular electrophysiology. The recent introduction of µLED silicon probes, which feature independently controllable miniature LEDs embedded at several levels of each of multiple shanks of silicon probes, provides a tractable method for temporally and spatially precise interrogation of neural circuits. Here, we provide a protocol addressing how to perform chronic recordings using µLED probes. This protocol provides a schematic for performing causal and reproducible interrogations of neural circuits and addresses all phases of the recording process: introduction of optogenetic construct, implantation of the µLED probe, performing simultaneous optogenetics and electrophysiology in vivo , and post-processing of recorded data. SUMMARY: This method allows a researcher to simultaneously perturb neural activity and record electrophysiological signal from the same neurons with high spatial specificity using silicon probes with integrated µLEDs. We outline a procedure detailing all stages of the process for performing reliable µLED experiments in chronically implanted rodents.

14.
STAR Protoc ; 4(4): 102570, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37729059

RESUMO

Micro-light-emitting-diode (µLED) silicon probes feature independently controllable miniature light-emitting-diodes (LEDs) embedded at several positions in each shank of a multi-shank probe, enabling temporally and spatially precise optogenetic neural circuit interrogation. Here, we present a protocol for performing causal and reproducible neural circuit manipulations in chronically implanted, freely moving animals. We describe steps for introducing optogenetic constructs, preparing and implanting a µLED probe, performing simultaneous in vivo electrophysiology with focal optogenetic perturbation, and recovering a probe following termination of an experiment. For complete details on the use and execution of this protocol, please refer to Watkins de Jong et al. (2023).1.


Assuntos
Optogenética , Silício , Animais , Optogenética/métodos , Neurônios/fisiologia , Fenômenos Eletrofisiológicos , Eletrofisiologia/métodos
15.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607007

RESUMO

Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination. Here, we show that clinical samples of primary invasive carcinoma and chemoresistant breast cancer metastasis contain a unique hybrid cancer cell population coexpressing pancytokeratin and the MSC marker fibroblast activation protein-α. We show that hybrid cells form in primary tumors and that they promote breast cancer metastasis and chemoresistance. Using single-cell microfluidics and in vivo models, we found that there are polyploid senescent cells within the hybrid cell population that contribute to metastatic dissemination. Our data reveal that Wnt Family Member 5A (WNT5A) plays a crucial role in supporting the chemoresistance properties of hybrid cells. Furthermore, we identified that WNT5A mediates hybrid cell formation through a phagocytosis-like mechanism that requires BCC-derived IL-6 and MSC-derived C-C Motif Chemokine Ligand 2. These findings reveal hybrid cell formation as a mechanism of chemoresistance and suggest that interrupting this mechanism may be a strategy in overcoming breast cancer drug resistance.


Assuntos
Células-Tronco Mesenquimais , Neoplasias de Mama Triplo Negativas , Humanos , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
16.
Science ; 375(6580): 570-574, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113721

RESUMO

Understanding how excitatory (E) and inhibitory (I) inputs are integrated by neurons requires monitoring their subthreshold behavior. We probed the subthreshold dynamics using optogenetic depolarizing pulses in hippocampal neuronal assemblies in freely moving mice. Excitability decreased during sharp-wave ripples coupled with increased I. In contrast to this "negative gain," optogenetic probing showed increased within-field excitability in place cells by weakening I and unmasked stable place fields in initially non-place cells. Neuronal assemblies active during sharp-wave ripples in the home cage predicted spatial overlap and sequences of place fields of both place cells and unmasked preexisting place fields of non-place cells during track running. Thus, indirect probing of subthreshold dynamics in neuronal populations permits the disclosing of preexisting assemblies and modes of neuronal operations.


Assuntos
Região CA1 Hipocampal/fisiologia , Células de Lugar/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Luz , Masculino , Camundongos , Inibição Neural , Optogenética , Comportamento Espacial , Ritmo Teta
17.
IEEE Trans Biomed Eng ; 69(1): 334-346, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191721

RESUMO

We report a miniaturized, minimally invasive high-density neural recording interface that occupies only a 1.53 mm2 footprint for hybrid integration of a flexible probe and a 256-channel integrated circuit chip. To achieve such a compact form factor, we developed a custom flip-chip bonding technique using anisotropic conductive film and analog circuit-under-pad in a tiny pitch of 75 µm. To enhance signal-to-noise ratios, we applied a reference-replica topology that can provide the matched input impedance for signal and reference paths in low-noise aimpliers (LNAs). The analog front-end (AFE) consists of LNAs, buffers, programmable gain amplifiers, 10b ADCs, a reference generator, a digital controller, and serial-peripheral interfaces (SPIs). The AFE consumes 51.92 µW from 1.2 V and 1.8 V supplies in an area of 0.0161 mm2 per channel, implemented in a 180 nm CMOS process. The AFE shows > 60 dB mid-band CMRR, 6.32 µVrms input-referred noise from 0.5 Hz to 10 kHz, and 48 MΩ input impedance at 1 kHz. The fabricated AFE chip was directly flip-chip bonded with a 256-channel flexible polyimide neural probe and assembled in a tiny head-stage PCB. Full functionalities of the fabricated 256-channel interface were validated in both in vitro and in vivo experiments, demonstrating the presented hybrid neural recording interface is suitable for various neuroscience studies in the quest of large scale, miniaturized recording systems.


Assuntos
Amplificadores Eletrônicos , Neurociências , Desenho de Equipamento , Processamento de Sinais Assistido por Computador
18.
IEEE Trans Biomed Circuits Syst ; 16(1): 52-63, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34982690

RESUMO

We report an energy-efficient, cancellation-free, bit-wise time-division duplex (B-TDD) transceiver (TRX) for real-time closed-loop control of high channel count neural interfaces. The proposed B-TDD architecture consists of a duty-cycled ultra-wide band (UWB) transmitter (3.1-5 GHz) and a switching U-NII band (5.2 GHz) receiver. An energy-efficient duplex is realized in a single antenna without power-hungry self-interference cancellation circuits which are prevalently used in the conventional full-duplex, single antenna transceivers. To suppress the interference between up- and down-links and enhance the isolation between the two, we devised a fast-switching scheme in a low noise amplifier and used 5× oversampling with a built-in winner-take-all voting in the receiver. The B-TDD transceiver was fabricated in 65 nm CMOS RF process, achieving low energy consumption of 0.32 nJ/b at 10 Mbps in the receiver and 9.7 pJ/b at 200 Mbps in the transmitter, respectively. For validation, the B-TDD TRX has been integrated with a µLED optoelectrode and a custom analog frontend integrated circuit in a prototype wireless bidirectional neural interface system. Successful in-vivo operation for simultaneously recording broadband neural signals and optical stimulation was demonstrated in a transgenic rodent.


Assuntos
Optogenética , Tecnologia sem Fio , Amplificadores Eletrônicos , Desenho de Equipamento
19.
Adv Sci (Weinh) ; 9(18): e2105414, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451232

RESUMO

Dynamic interactions within and across brain areas underlie behavioral and cognitive functions. To understand the basis of these processes, the activities of distributed local circuits inside the brain of a behaving animal must be synchronously recorded while the inputs to these circuits are precisely manipulated. Even though recent technological advances have enabled such large-scale recording capabilities, the development of the high-spatiotemporal-resolution and large-scale modulation techniques to accompany those recordings has lagged. A novel neural probe is presented in this work that enables simultaneous electrical monitoring and optogenetic manipulation of deep neuronal circuits at large scales with a high spatiotemporal resolution. The "hectoSTAR" micro-light-emitting-diode (µLED) optoelectrode features 256 recording electrodes and 128 stimulation µLEDs monolithically integrated on the surface of its four 30-µm thick silicon micro-needle shanks, covering a large volume with 1.3-mm × 0.9-mm cross-sectional area located as deep as 6 mm inside the brain. The use of this device in behaving mice for dissecting long-distance network interactions across cortical layers and hippocampal regions is demonstrated. The recording-and-stimulation capabilities hectoSTAR µLED optoelectrodes enables will open up new possibilities for the cellular and circuit-based investigation of brain functions in behaving animals.


Assuntos
Fenômenos Eletrofisiológicos , Optogenética , Animais , Eletrofisiologia Cardíaca , Córtex Cerebral , Camundongos , Neurônios/fisiologia , Optogenética/métodos
20.
iScience ; 25(8): 104827, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992062

RESUMO

Triple-negative breast cancers (TNBCs) are frequently poorly differentiated with high propensity for metastasis. Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 that mediates transcriptional repression in normal cells and in cancer through H3K27me3. However, H3K27me3-independent non-canonical functions of EZH2 are incompletely understood. We reported that EZH2 phosphorylation at T367 by p38α induces TNBC metastasis in an H3K27me3-independent manner. Here, we show that cytosolic EZH2 methylates p38α at lysine 139 and 165 leading to enhanced p38α stability and that p38 methylation and activation require T367 phosphorylation of EZH2. Dual inhibition of EZH2 methyltransferase and p38 kinase activities downregulates pEZH2-T367, H3K27me3, and p-p38 pathways in vivo and reduces TNBC growth and metastasis. These data uncover a cooperation between EZH2 canonical and non-canonical mechanisms and suggest that inhibition of these pathways may be a potential therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA