Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673794

RESUMO

The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.


Assuntos
Proteínas de Choque Térmico , Resposta ao Choque Térmico , Humanos , Proteínas de Choque Térmico/metabolismo , Animais
2.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203294

RESUMO

Ketone bodies (KBs), such as acetoacetate and ß-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.


Assuntos
Lesões Encefálicas , Dieta Cetogênica , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Corpos Cetônicos , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Infarto Cerebral
3.
Nutrients ; 16(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125345

RESUMO

In this study, we undertook an extensive investigation to determine how CypB PPIase activity affects preadipocyte differentiation and lipid metabolism. Our findings revealed that inhibition of CypB's PPIase activity suppressed the expression of crucial proteins involved in adipocyte differentiation and induced changes in proteins regulating the cell cycle. Furthermore, we clarified the impact of CypB's PPIase activity on lipid metabolism via the AKT/mTOR signaling pathway. Additionally, we demonstrated the involvement of CypB's PPIase activity in lipid metabolism through the XBP1s pathway. These discoveries offer invaluable insights for devising innovative therapeutic strategies aimed at treating and averting obesity and its related health complications. Targeting CypB's PPIase activity may emerge as a promising avenue for addressing obesity-related conditions. Furthermore, our research opens up opportunities for creating new therapeutic strategies by enhancing our comprehension of the processes involved in cellular endoplasmic reticulum stress.


Assuntos
Células 3T3-L1 , Adipócitos , Diferenciação Celular , Metabolismo dos Lipídeos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína 1 de Ligação a X-Box , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipócitos/metabolismo , Adipogenia , Estresse do Retículo Endoplasmático/fisiologia
4.
Heliyon ; 10(9): e29921, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707393

RESUMO

Background: Although obesity is known to be related to allergic diseases, few studies have investigated the prevalence of allergic diseases in individuals with obesity, especially during the COVID-19 pandemic. Thus, this study aimed to analyze national trends of allergic diseases among individuals with obesity and sociodemographic factors. Methods: This study used data from the Korea National Health and Nutrition Examination Survey to examine the prevalence of allergic diseases among individuals with obesity in South Korea from 2005 to 2021. A nationally representative sample of 118,275 participants aged over 2 years or above was divided into six groups for analysis. This study used weighted multivariate regression analysis to examine the estimates of related factors. It assessed the weighted odds ratios or ß-coefficients for these factors across different categories, including age, sex, region of residence, education level, household income, and body mass index for the entire population. Results: All allergic diseases showed a general upward trend from 2005 to 2021, but each disease showed different prevalence trends when compared by age. Before the pandemic, those aged ≤39 years had an increasing trend for asthma and AD, but those aged ≥40 years had a decreasing trend. For asthma, ß-coefficients were 0.629 (95 % CI, 0.299 to 0.958) for 19-39 years, -0.245 (-0.450 to -0.040) for 40-59 years, and -0.668 (-1.024 to -0.313) for ≥60 years. For AD, ß-coefficients were 2.514 (1.258-3.769) in those aged 2-18 years, 0.630 (0.173-1.086) in those aged 19-39 years, -0.458 (-0.648 to -0.268) in those aged 40-59 years, and -0.253 (-0.454 to -0.052) in those aged ≥60 years. However, for both asthma and AD, there were no significant changes in prevalence during the pandemic. In the case of AR, trends were different from those of asthma and AD. Before the pandemic, AR showed an increasing trend in those aged ≤39 years and those aged ≥40 years: ß-coefficients were 3.067 (2.344-3.790) in 19-39 years, 2.051 (1.609-2.493) in 40-59 years, and 1.173 (0.820-1.526) in ≥60 years. During the pandemic, there was an increasing trend only among those aged 40-59, with no significant changes in other age groups: ß-coefficients were 1.438 (0.065-2.811) in 40-59 years. Conclusions: From 2005 to 2021, all allergic diseases (asthma, AD, and AR) increased overall, but with different age-related trends. No significant link was found between COVID-19 and allergic diseases, possibly due to preventive measures like mask-wearing and social distancing. Anxiety about accessing healthcare during the pandemic likely contributed to a decline in allergy diagnoses, highlighting the need for comprehensive strategies to manage and prevent allergic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA