Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 113(5): 1779-1788, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35253340

RESUMO

Intraperitoneal administration of anticancer nanoparticles is a rational strategy for preventing peritoneal dissemination of colon cancer due to the prolonged retention of nanoparticles in the abdominal cavity. However, instability of nanoparticles in body fluids causes inefficient retention, reducing its anticancer effects. We have previously developed anticancer nanoparticles containing tocopheryl succinate, which showed high in vivo stability and multifunctional anticancer effects. In the present study, we have demonstrated that peritoneal dissemination derived from colon cancer was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. The biodistribution of tocopheryl succinate nanoparticles was evaluated using inductively coupled plasma mass spectroscopy and imaging analysis in mice administered quantum dot encapsulated tocopheryl succinate nanoparticles. Intraperitoneal administration of tocopheryl succinate nanoparticles showed longer retention in the abdominal cavity than by its intravenous (i.v.) administration. Moreover, due to effective biodistribution, tumor growth was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. Furthermore, the anticancer effect was attributed to the inhibition of cancer cell proliferation and improvement of the intraperitoneal microenvironment, such as decrease in the levels of vascular endothelial growth factor A, interleukin 10, and M2-like phenotype of tumor-associated macrophages. Collectively, intraperitoneal administration of tocopheryl succinate nanoparticles is expected to have multifaceted antitumor effects against colon cancer with peritoneal dissemination.


Assuntos
Neoplasias do Colo , Nanopartículas , Animais , Neoplasias do Colo/tratamento farmacológico , Humanos , Camundongos , Nanopartículas/química , Succinatos/farmacologia , Distribuição Tecidual , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia
2.
J Clin Biochem Nutr ; 66(3): 198-205, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32523246

RESUMO

In the present study, we investigated the beneficial and risky effects of exercise intended to prevent or treat lifestyle-related diseases on insulin sensitivity, lactic acid utilization, lipid metabolism, hepatic and renal oxidative stress, hepatic selenoprotein P and renal function in obese and glucose-intolerant rats with renal failure. We fed normal rats a 20% casein diet while the glucose-intolerant, obese rats received a high-fructose diet, and after then rats received single injection of vancomycin at a dose of 400 mg/kg for constructing the duplicative state of renal failure and diabetes mellitus. They were forced to run for 1 h/day, 6 days/week, for 10 weeks. Exercise reduced visceral fat and ameliorated insulin sensitivity in the high-fructose group, improved lactic acid usage efficiency, however, increased hepatic oxidative stress and complicated renal dysfunction in the normal and high-fructose fed groups with renal failure. Additionally, exercise upregulated hepatic selenoprotein P expression and enhanced renal antioxidative system in both groups. It is concluded that strictly controlled exercise conditions must be adapted to patient health states especially in view of kidney protection, and supplemental therapy is also recommended in parallel with exercise, using nutrients and vitamins for kidney protection.

3.
J Clin Biochem Nutr ; 66(2): 124-131, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32231408

RESUMO

In the present study, we investigated the effects of exercise intended to prevent or treat lifestyle-related diseases on the glucose tolerance, insulin level, lactic acid utilization, muscle glycogen synthesis, hepatic and renal oxidative stress, hepatic selenoprotein P and biological trace element levels in organs of obese, glucose-intolerant rats. We fed normal, healthy rats a 20% casein diet while the glucose-intolerant, obese rats received a high-fructose diet. They were forced to run for one hour per day, six days per week, for ten weeks. Exercise reduced visceral fat and ameliorated glucose tolerance in the high-fructose group, lowered blood lactic acid levels, improved lactic acid usage efficiency, and increased oxidative stress and hepatic levels of Mn, Fe, Cu, and Zn in the normal and high-fructose groups. Additionally, exercise significantly upregulated hepatic selenoprotein P expression in both groups, however, its effect was remarkable in healthy group. On the other hand, muscle glycogen synthesis was not markedly enhanced in high-fructose-diet rats but in normal-diet rats in response to exercise. It is concluded that exercise conditions rather than exercise load must be customized and optimized for each health and disease states in advance before starting exercise training intended to prevent or treat lifestyle-related diseases.

4.
J Clin Biochem Nutr ; 65(2): 99-108, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31592053

RESUMO

4-Methylthio-3-butenyl isothiocyanate (MTBI) is a pungent bioactive constituent found in daikon. However, MTBI is immediately hydrolyzed to 3-hydroxy-methylene-2-thioxopyrrolidine in grated daikon. In this study, we evaluated whether MTBI in grated daikon complexed with α-cyclodextrin (αCD) has anti-obesity effects in mice. C57BL/6J mice were fed a normal diet (normal group), high-fat diet (HFD, control group), HFD with αCD (αCD group), or HFD with MTBI-αCD (MTBI-αCD group) for 16 weeks. The results showed that the final body weight, epididymal white adipose tissue weight, and plasma triglyceride and total cholesterol levels were significantly lower in the MTBI-αCD group than in the control group. The cell size in epididymal adipose tissue was significantly smaller and the accumulation of lipids in the liver was significantly lower in the MTBI-αCD group than in the control group. Furthermore, real-time polymerase chain reaction showed that the mRNA expression level of tumor necrosis factor-alpha was suppressed in the MTBI-αCD group. We also observed low superoxide dismutase activity in the MTBI-αCD group, possibly because MTBI-αCD has the potential to resist HFD-induced oxidative injury. In conclusion, MTBI-αCD exerted anti-inflammation and antioxidant effects to suppress lipid accumulation in epididymal adipose tissue and the liver. These effects then prevented HFD-induced obesity in mice.

5.
Biol Pharm Bull ; 40(3): 318-326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250273

RESUMO

Zinc (Zn) is a trace element with anti-diabetes mellitus (anti-DM) effects. Zn complexes exhibit stronger insulin-like activity than Zn ions. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) was recently reported to be a potent anti-DM candidate. We examined the effects of [Zn(hkt)2] on insulin resistance and pancreatic islet cells through in vivo long-term ingestion studies. In an in vivo study, we performed 4-month long-term [Zn(hkt)2] administration experiments in KK-Ay mice as a type 2 DM animal model. Ingestion of [Zn(hkt)2] resulted in lower blood glucose levels compared with the non-treated KK-Ay mice (control group). Additionally, [Zn(hkt)2] treatment decreased plasma insulin concentration compared with that of the non-treated KK-Ay group. [Zn(hkt)2] treatment resulted in a significant suppression of islet cell enlargement and a significantly decreased number of insulin-positive cells compared with the non-treated KK-Ay control group. The [Zn(hkt)2] treatment group showed the increasing tendency in the amount of Zn levels in peripheral organs; liver, muscle, adipose, and pancreas, compared with the non-treated KK-Ay control group. However, the Zn level in the pancreas of the [Zn(hkt)2] treatment group did not show the significant increase compared with the non-treated KK-Ay control group. This accumulation of Zn in pancreas suggested that [Zn(hkt)2] mainly effects on the peripheral tissue, and [Zn(hkt)2] has the less effect on the pancreas directly. Thus, we concluded that [Zn(hkt)2] exerted the main effect on peripheral organs by ameliorating insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Resistência à Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Oligoelementos/farmacologia , Compostos de Zinco/farmacologia , Zinco/farmacologia , Animais , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Modelos Animais de Doenças , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Ilhotas Pancreáticas/patologia , Masculino , Camundongos Endogâmicos , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico , Ratos , Oligoelementos/sangue , Oligoelementos/uso terapêutico , Tropolona/análogos & derivados , Tropolona/farmacologia , Tropolona/uso terapêutico , Zinco/sangue , Zinco/uso terapêutico , Compostos de Zinco/uso terapêutico
6.
Biol Pharm Bull ; 40(4): 510-515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28381805

RESUMO

Many zinc (Zn) complexes have been developed as promising oral antidiabetic agents. In vitro assays using adipocytes have demonstrated that the coordination structures of Zn complexes affect the uptake of Zn into cells and have insulinomimetic activities, for which moderate stability of Zn complexes is vital. The complexation of Zn plays a major role improving its bioavailability. However, investigation of the speciation changes of Zn complexes after oral administration is lacking. A dual radiolabeling approach was applied in order to investigate the speciation of bis(5-chloro-7-iodo-8-quinolinolato)zinc complex [Zn(Cq)2], which exhibits the antidiabetic activity in diabetic mice. In the present study, 65Zn- and 131I-labeled [Zn(Cq)2] were synthesized, and their biodistribution were analyzed after an oral administration using both invasive conventional assays and noninvasive gamma-ray emission imaging (GREI), a novel nuclear medicine imaging modality that enables analysis of multiple radionuclides simultaneously. The GREI experiments visualized the behavior of 65Zn and [131I]Cq from the stomach to large intestine and through the small intestine; most of the administered Zn was transported together with clioquinol (5-chloro-7-iodo-8-quinolinol) (Cq). Higher accumulation of 65Zn for [Zn(Cq)2] than ZnCl2 suggests that the Zn associated with Cq was highly absorbed by the intestinal tract. In particular, the molar ratio of administered iodine to Zn decreased during the distribution processes, indicating the dissociation of most [Zn(Cq)2] complexes. In conclusion, the present study successfully evaluated the speciation changes of orally administered [Zn(Cq)2] using the dual radiolabeling method.


Assuntos
Cloretos/administração & dosagem , Cloretos/metabolismo , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/metabolismo , Compostos de Zinco/administração & dosagem , Compostos de Zinco/metabolismo , Administração Oral , Animais , Masculino , Camundongos , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
7.
Int J Mol Sci ; 18(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215553

RESUMO

Since the discovery of the anti-diabetic effects of zinc (Zn) complex, we synthesized several Zn complexes and evaluated their effects using the KKAy type 2 diabetes mouse model. Recently, we demonstrated that organo-chalcogen (sulfur and selenium) Zn complexes elicit strong anti-diabetic effects. In this study, we treated leptin-deficient ob/ob mice with organo-chalcogen Zn complexes, and evaluated the resulting anti-diabetic effects in a mouse model of diabetes arising from pathogenic mechanisms different from those in KKAy mice. C57BL/6J ob/ob mice orally received either bis(3-hydroxy-2-methyl-4(H)-pyran-4-thiono)Zn, [Zn(hmpt)2] or bis(3-hydroxy-2-methyl-4(H)-pyran-4-seleno)Zn, [Zn(hmps)2], daily for 28 days. Both Zn complexes elicited potent blood glucose-lowering effects and improved HbA1c values. Moreover, glucose intolerance improved as evidenced by the oral glucose tolerance test, and fasting plasma insulin levels decreased in both types of Zn complex-treated mice. Zn concentrations in the liver and pancreas of [Zn(hmpt)2]-treated mice and in the pancreas of [Zn(hmps)2]-treated mice were increased, respectively. The results suggest that the present Zn complexes mainly exerted an anti-diabetic effect in the liver or pancreas. This study is the first to demonstrate that potent Zn complexes elicit anti-diabetic effects in not only KKAy but also ob/ob mice via a normalizing effect on insulin secretion and fasting blood glucose levels.


Assuntos
Complexos de Coordenação/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Compostos Organosselênicos/química , Pironas/química , Compostos de Enxofre/química , Zinco/química , Animais , Glicemia/metabolismo , Células Cultivadas , Complexos de Coordenação/química , Diabetes Mellitus Tipo 2/genética , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pironas/administração & dosagem , Ratos , Ratos Wistar , Receptores para Leptina/genética
8.
Cardiovasc Diabetol ; 15: 75, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27153943

RESUMO

BACKGROUND: Type-2 diabetics have an increased risk of cardiomyopathy, and heart failure is a major cause of death among these patients. Growing evidence indicates that proinflammatory cytokines may induce the development of insulin resistance, and that anti-inflammatory medications may reverse this process. We investigated the effects of the oral administration of zinc and acetylsalicylic acid, in the form of bis(aspirinato)zinc(II)-complex Zn(ASA)2, on different aspects of cardiac damage in Zucker diabetic fatty (ZDF) rats, an experimental model of type-2 diabetic cardiomyopathy. METHODS: Nondiabetic control (ZL) and ZDF rats were treated orally with vehicle or Zn(ASA)2 for 24 days. At the age of 29-30 weeks, the electrical activities, left-ventricular functional parameters and left-ventricular wall thicknesses were assessed. Nitrotyrosine immunohistochemistry, TUNEL-assay, and hematoxylin-eosin staining were performed. The protein expression of the insulin-receptor and PI3K/AKT pathway were quantified by Western blot. RESULTS: Zn(ASA)2-treatment significantly decreased plasma glucose concentration in ZDF rats (39.0 ± 3.6 vs 49.4 ± 2.8 mM, P < 0.05) while serum insulin-levels were similar among the groups. Data from cardiac catheterization showed that Zn(ASA)2 normalized the increased left-ventricular diastolic stiffness (end-diastolic pressure-volume relationship: 0.064 ± 0.008 vs 0.084 ± 0.014 mmHg/µl; end-diastolic pressure: 6.5 ± 0.6 vs 7.9 ± 0.7 mmHg, P < 0.05). Furthermore, ECG-recordings revealed a restoration of prolonged QT-intervals (63 ± 3 vs 83 ± 4 ms, P < 0.05) with Zn(ASA)2. Left-ventricular wall thickness, assessed by echocardiography, did not differ among the groups. However histological examination revealed an increase in the cardiomyocytes' transverse cross-section area in ZDF compared to the ZL rats, which was significantly decreased after Zn(ASA)2-treatment. Additionally, a significant fibrotic remodeling was observed in the diabetic rats compared to ZL rats, and Zn(ASA)2-administered ZDF rats showed a similar collagen content as ZL animals. In diabetic hearts Zn(ASA)2 significantly decreased DNA-fragmentation, and nitro-oxidative stress, and up-regulated myocardial phosphorylated-AKT/AKT protein expression. Zn(ASA)2 reduced cardiomyocyte death in a cellular model of oxidative stress. Zn(ASA)2 had no effects on altered myocardial CD36, GLUT-4, and PI3K protein expression. CONCLUSIONS: We demonstrated that treatment of type-2 diabetic rats with Zn(ASA)2 reduced plasma glucose-levels and prevented diabetic cardiomyopathy. The increased myocardial AKT activation could, in part, help to explain the cardioprotective effects of Zn(ASA)2. The oral administration of Zn(ASA)2 may have therapeutic potential, aiming to prevent/treat cardiac complications in type-2 diabetic patients.


Assuntos
Aspirina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacocinética , Administração Oral , Animais , Aspirina/administração & dosagem , Aspirina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Cardiomiopatias Diabéticas/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Zucker , Zinco/administração & dosagem
9.
J Biol Inorg Chem ; 21(4): 537-48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27251140

RESUMO

Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-ß or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRß. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.


Assuntos
Insulina/metabolismo , Compostos Organometálicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Cardiovasc Drugs Ther ; 28(6): 533-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129612

RESUMO

PURPOSE: Neointima formation following angioplasty is a serious consequence of endothelial damage in arteries. Inflammatory mediators and lack of endothelial regulatory mechanisms lead to migration and proliferation of smooth-muscle cells and thus to restenosis. This study examines the effect of the novel bis (aspirinato) zinc (II) complex on neointima formation in a rat model of carotid balloon-injury. METHODS: Rats underwent balloon-injury of the right common carotid artery, then received PEG400 vehicle (untreated-group), acetylsalicylic-acid (ASA-group), zinc-chloride (Zn-group) and bis (aspirinato) zinc (II) complex (Zn(ASA) 2-group) orally for 18 consecutive days. From harvested carotid arteries, histology, immunohistochemistry and mRNA expression analysis were performed. RESULTS: Compared to the untreated-group, Zn (ASA) 2-treatment significantly lowered stenosis ratio (54.0 ± 5.8% to 25.5 ± 3.9%) and reduced neointima/media ratio (1.5 ± 0.2 to 0.5 ± 0.1). Significantly higher alpha smooth muscle actin mRNA and protein expression were measured after Zn (ASA)2 and Zn-treatment in comparison with the untreated and ASA-groups while the expression of matrix-metalloproteinase-9 was significantly higher in these groups compared to Zn (ASA)2. The presence of collagen in media was significantly decreased in all treated groups. mRNA expressions of nuclear factor kappa-b, transforming growth-factor-ß and proliferating cell nuclear antigen were significantly down-regulated, whereas a20 was up-regulated by Zn (ASA)2 treatment compared to the untreated and ASA-groups. CONCLUSION: This study proves the effectivity of the novel bis (aspirinato) zinc complex in reducing neointima formation and restenosis after balloon-injury and supports the hypothesis that inhibition of smooth-muscle transformation/proliferation plays a key role in the prevention of restenosis.


Assuntos
Artérias Carótidas/efeitos dos fármacos , Lesões das Artérias Carótidas/tratamento farmacológico , Neointima/tratamento farmacológico , Zinco/farmacologia , Animais , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Colágeno/metabolismo , Regulação para Baixo/efeitos dos fármacos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Neointima/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(49): E1330-8, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22084097

RESUMO

Multiwalled carbon nanotubes (MWCNTs) have the potential for widespread applications in engineering and materials science. However, because of their needle-like shape and high durability, concerns have been raised that MWCNTs may induce asbestos-like pathogenicity. Although recent studies have demonstrated that MWCNTs induce various types of reactivities, the physicochemical features of MWCNTs that determine their cytotoxicity and carcinogenicity in mesothelial cells remain unclear. Here, we showed that the deleterious effects of nonfunctionalized MWCNTs on human mesothelial cells were associated with their diameter-dependent piercing of the cell membrane. Thin MWCNTs (diameter ∼ 50 nm) with high crystallinity showed mesothelial cell membrane piercing and cytotoxicity in vitro and subsequent inflammogenicity and mesotheliomagenicity in vivo. In contrast, thick (diameter ∼ 150 nm) or tangled (diameter ∼ 2-20 nm) MWCNTs were less toxic, inflammogenic, and carcinogenic. Thin and thick MWCNTs similarly affected macrophages. Mesotheliomas induced by MWCNTs shared homozygous deletion of Cdkn2a/2b tumor suppressor genes, similar to mesotheliomas induced by asbestos. Thus, we propose that different degrees of direct mesothelial injury by thin and thick MWCNTs are responsible for the extent of inflammogenicity and carcinogenicity. This work suggests that control of the diameter of MWCNTs could reduce the potential hazard to human health.


Assuntos
Células Epiteliais/metabolismo , Mesotelioma/genética , Mutação , Nanotubos de Carbono/intoxicação , Animais , Linhagem Celular , Células Cultivadas , Hibridização Genômica Comparativa , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Citocinas/genética , Células Epiteliais/ultraestrutura , Epitélio/lesões , Epitélio/ultraestrutura , Deleção de Genes , Expressão Gênica , Humanos , Macrófagos/metabolismo , Mesotelioma/etiologia , Mesotelioma/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Clin Biochem Nutr ; 55(2): 97-102, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25320456

RESUMO

In recent years, the number of patients suffering from diabetes mellitus has been increasing worldwide. In particular, type 2 diabetes mellitus, a lifestyle-related disease, is recognized as a serious disease with various complications. Many types of pharmaceutics or specific health foods have been used for the management of diabetes mellitus. At the same time, the relationship between diabetes mellitus and α-lipoic acid has been recognized for many years. In this study, we found that the α-lipoic acid γ-cyclodextrin complex exhibited an HbA1c lowering effect for treating type 2 diabetes mellitus in animal models. Moreover, in this study, we investigated the activation of phosphorylation of AMP-activated protein kinase, which plays a role in cellular energy homeostasis, in the liver of KKA(y) mice by using α-lipoic acid and the α-lipoic acid γ-cyclodextrin complex. Our results show that the α-lipoic acid γ-cyclodextrin complex strongly induced the phosphorylation of AMP-activated protein kinase. Thus, we concluded that intake of the α-lipoic acid γ-cyclodextrin complex exerted an antidiabetic effect by suppressing the elevation of postprandial hyperglycemia as well as doing exercise.

13.
J Toxicol Pathol ; 27(3-4): 163-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25378801

RESUMO

Although green tea is considered to be a healthy beverage, hepatotoxicity associated with the consumption of green tea extract has been reported. In the present study, we characterized the hepatotoxicity of green tea extract in rats and explored the responsible mechanism. Six-week-old IGS rats received a single intraperitoneal (ip) injection of 200 mg/kg green tea extract (THEA-FLAN 90S). At 8, 24, 48 and 72 hrs and 1 and 3 months after exposure, liver damage was assessed by using blood-chemistry, histopathology, and immunohistochemistry to detect cell death (TUNEL and caspase-3) and proliferative activity (PCNA). Analyses of malondialdehyde (MDA) in serum and the liver and of MDA and thymidine glycol (TG) by immunohistochemistry, as oxidative stress markers, were performed. Placental glutathione S-transferase (GST-P), which is a marker of hepatocarcinogenesis, was also immunohistochemically stained. To examine toxicity at older ages, 200 mg/kg green tea extract was administered to 18-wk-old female rats. In 6-wk-old rats, 12% of males and 50% of females died within 72 hrs. In 18-wk-old rats, 88% died within 72 hrs. The serum levels of aspartate aminotransferase, alanine aminotransferase and/or total bilirubin increased in both males and females. Single-cell necrosis with positive signs of TUNEL and caspase-3 was seen in perilobular hepatocytes from 8 hrs onward in all lobular areas. PCNA-positive hepatocytes increased at 48 hrs. MDA levels in the serum and liver tended to increase, and MDA- and TG-positive hepatocytes were seen immunohistochemically. GST-P-positive hepatocellular altered foci were detected in one female rat at the 3-month time point. In conclusion, a single injection of green tea extract induced acute and severe hepatotoxicity, which might be associated with lipid peroxidation and DNA oxidative stress in hepatocytes.

14.
J Pathol ; 228(3): 366-77, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22864872

RESUMO

Exposure to asbestos is a risk for malignant mesothelioma (MM) in humans. Among the commercially used types of asbestos (chrysotile, crocidolite, and amosite), the carcinogenicity of chrysotile is not fully appreciated. Here, we show that all three asbestos types similarly induced MM in the rat peritoneal cavity and that chrysotile caused the earliest mesothelioma development with a high fraction of sarcomatoid histology. The pathogenesis of chrysotile-induced mesothelial carcinogenesis was closely associated with iron overload: repeated administration of an iron chelator, nitrilotriacetic acid, which promotes the Fenton reaction, significantly reduced the period required for carcinogenesis; massive iron deposition was found in the peritoneal organs with high serum ferritin; and homozygous deletion of the CDKN2A/2B/ARF tumour suppressor genes, the most frequent genomic alteration in human MM and in iron-induced rodent carcinogenesis, was observed in 92.6% of the cases studied with array-based comparative genomic hybridization. The induced rat MM cells revealed high expression of mesoderm-specific transcription factors, Dlx5 and Hand1, and showed an iron regulatory profile of active iron uptake and utilization. These data indicate that chrysotile is a strong carcinogen when exposed to mesothelia, acting through the induction of local iron overload. Therefore, an intervention to remove local excess iron might be a strategy to prevent MM after asbestos exposure.


Assuntos
Asbestos Serpentinas/efeitos adversos , Biomarcadores Tumorais/metabolismo , Sobrecarga de Ferro/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Mesotelioma/induzido quimicamente , Mesotelioma/metabolismo , Neoplasias Peritoneais/induzido quimicamente , Neoplasias Peritoneais/metabolismo , Animais , Asbestos Serpentinas/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Ferro/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/patologia , Mesotelioma Maligno , Ácido Nitrilotriacético/farmacologia , Neoplasias Peritoneais/patologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
15.
J Toxicol Pathol ; 26(3): 329-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24155568

RESUMO

Vanadium has potential for use in diabetes therapy. Many investigators have reported toxic effects of inorganic vanadium salts; however, there are few reports on toxic effects of oxovanadium(VO(2+)) complexes. Therefore, we studied VO(2+) toxicity by examining histological changes and measuring the vanadium concentration in the testis after repeated oral administration of bis(1-oxy-2-pyridine-thiolato)oxovanadium(VO(2+)) (VO(opt)2) for 2 or 4 weeks in KK-A(y) mice. Severe mineralization and degeneration/necrosis of the seminiferous tubules were detected after either 2 or 4 weeks of administration. Vacuolar changes in Sertoli cells and the seminiferous epithelia, and hyperplasia of Leydig cells were observed in the testes of some animals. Vanadium concentrations in the mineralized testis were much higher than those in the testis of untreated KK-A(y) mice. These results represent the first report of the possibility for seminiferous tubules mineralization induced by VO(opt)2 administration. Therefore, our research provides important information about the potentially toxic effects of VO(2+) complexes.

16.
Biol Pharm Bull ; 35(5): 698-704, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22687404

RESUMO

An ultra high-sensitivity method for quantifying fexofenadine concentration in rat plasma samples by multiple injection method (MIM) was developed for a microdose study. In this study, MIM involved continuous injections of multiple samples containing the single compound into a column of the ultra-HPLC (UHPLC) system, and then, temporary trapping of the analyte at the column head. This was followed by elution of the compound from the column and detection by mass spectrometer. Fexofenadine, used as a model compound in this study, was extracted from the plasma samples by a protein precipitation method. Chromatographic separation was achieved on a reversed-phase C18 column by using a gradient method with 0.1% formic acid and 0.1% formic acid in acetonitrile as the mobile phase. The analyte was quantified in the positive-ion electrospray ionization mode using selected reaction monitoring. In this study, the analytical time per fexofenadine sample was approximately 2 min according to the UHPLC system. The method exhibited the linear dynamic ranges of 5-5000 pg/mL for fexofenadine in rat plasma. The intra-day precisions were from 3.2 to 8.7% and the accuracy range was 95.2-99.3%. The inter-day precisions and accuracies ranged from 3.5 to 8.4% and from 98.6 to 102.6%, respectively. The validated MIM was successfully applied to a microdose study in the rats that received oral administration of 100 µg/kg fexofenadine. We suggest that this method might be beneficial for the quantification of fexofenadine concentrations in a microdose clinical study.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Terfenadina/análogos & derivados , Administração Oral , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Terfenadina/sangue , Terfenadina/farmacocinética
17.
Biol Pharm Bull ; 35(4): 629-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466572

RESUMO

Retinoid X receptor (RXR) agonists are reported to exhibit blood glucose-lowering action owing to peroxisome proliferator-activated receptor (PPAR)/RXR or liver X receptor (LXR)/RXR activation, but may also cause adverse effects such as blood triglyceride elevation. In order to examine the feasibility of separating the glucose-lowering action from the adverse effects, we examined the effects of RXR agonists (NEt-TMN), NEt-3IB, and NEt-3IP, which have different heterodimer-activating patterns, in KKA(y) type 2 diabetes model mice. We found that NEt-3IB induced lower degrees of hepatomegaly and blood triglyceride (TG) elevation than the other RXR agonists, even though all of them showed similar blood glucose-lowering action on repeated administration. These findings indicate that structural modification of RXR agonists is a potentially effective strategy to reduce adverse effects while retaining desired activities.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Receptores X de Retinoides/agonistas , Animais , Glicemia/análise , Células COS , Chlorocebus aethiops , Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Fígado/patologia , Receptores X do Fígado , Masculino , Camundongos , Tamanho do Órgão , Receptores Nucleares Órfãos/metabolismo , PPAR gama/metabolismo , Receptores X de Retinoides/metabolismo , Triglicerídeos/sangue
18.
Biol Pharm Bull ; 35(4): 588-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466565

RESUMO

The variety of physiologic and biologic functions of zinc is fascinating and could be applicable to medicine. Our previous studies demonstrated that the absorption of zinc after oral administration to rats is dose-dependent. In order to clarify the detailed mechanism of the dose-dependent in vivo absorption, the transport of zinc across intestinal epithelial cells was investigated using Caco-2 monolayers and isolated rat intestinal membranes. The permeation of zinc across Caco-2 monolayers is concentration-dependent, and both saturable and nonsaturable components are involved. The Michaelis constant and maximum transport rate for saturable transport are 11.7 µM and 31.8 pmol min(-1) cm(-2), respectively; the permeability coefficient for nonsaturable trasnport is 2.37×10(-6) cm s(-1). These parameters for permeation across membranes isolated from duodenum, ileum, and jejunum of rats are similar with those of Caco-2 cells. The comparison of the parameters for permeation across isolated intestinal membrane suggests that the major site of intestinal zinc absorption in rats is the duodenum. The maximum rate of zinc transport across the isolated intestinal membrane (V(max)) shows no correlation with mRNA expression of ZIP4, ZIP5 or ZnT1 in rats, but shows an inverse correlation with that of metallothioneins (MTs). This finding may be partly explained by the buffering role of metallothionein in intestinal absorption. The saturable transport of zinc is not simply determined only by the influx transporter, ZIP4, since three influx and efflux transporters are involved in the transport of zinc.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Zinco/metabolismo , Animais , Células CACO-2 , Proteínas de Transporte de Cátions/metabolismo , Humanos , Técnicas In Vitro , Absorção Intestinal , Intestinos/citologia , Masculino , Metalotioneína/metabolismo , Ratos , Ratos Wistar
19.
Chem Pharm Bull (Tokyo) ; 60(9): 1096-104, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976316

RESUMO

Zn(II) complexes are expected to be useful in the treatment of diabetes mellitus because of the hypoglycemic effect produced by its insulin-mimetic activity. Previous reports indicated that Zn(II) complexes with coordinating sulfur exhibit higher insulin-mimetic activity. In this study, we investigated the pharmacological and pharmacokinetic differences between Zn(O(4)) and Zn(S(2)O(2)) coordination modes of tropolonato-Zn(II) complexes with insulin-mimetic activity. Among the tropolonato-Zn(II) complexes with various coordination modes, di(2-mercaptotropolonato)zinc(II) (ZT2) with the Zn(S(2)O(2)) coordination mode was found to exhibit the highest in vitro insulin-mimetic activity with respect to inhibition of free fatty acid (FFA) release and enhancement of glucose uptake in isolated rat adipocytes treated with adrenaline. On comparing investigations of the antidiabetic effect in vivo, ZT2 was found to exhibit potent hypoglycemic activity and improve insulin resistance in type 2 diabetic KKA(y) mice at a low orally administered daily dose. Di(tropolonato)zinc(II) (ZT1), which has the Zn(O(4)) coordination mode, had a lesser effect at the same dose. In a pharmacokinetic analysis based on the (65)Zn tracer method, ZT2 was found to be absorbed at a significantly slower rate with a longer half-life than was ZT1. These results suggest that the potent hypoglycemic activity of ZT2 might be attributed to its long half-life.


Assuntos
Complexos de Coordenação/farmacocinética , Complexos de Coordenação/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Zinco/farmacocinética , Zinco/uso terapêutico , Animais , Glicemia/análise , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Masculino , Camundongos , Ratos , Ratos Wistar , Zinco/química , Zinco/farmacologia
20.
Sci Rep ; 12(1): 9899, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701576

RESUMO

Large-eddy simulations were performed to investigate the entrainment buoyancy flux at the mixed layer base due to nonlinearly interacting shear-driven turbulence (ST) and convective turbulence (CT). The fluxes due to pure ST and pure CT were first evaluated, and their scalings were derived. The entrainment flux due to coexisting ST and CT was then evaluated and compared to the scaling-based fluxes due to the pure turbulences. It was found that nonlinear effects reduce the entrainment flux by [Formula: see text] when the turbulent kinetic energy production rates of ST and CT are comparable. The mixing parameterization schemes used in ocean general circulation models (OGCMs) fail to accurately reproduce the mixing due to the pure turbulences and/or the nonlinear effects, and thus the mixed layer depth (MLD). Because analysis using global datasets suggests that nonlinear effects are large at the mid-latitudes, these results indicate that the nonlinear effects might be responsible for the deep MLD biases in OGCMs and that mixing parameterization schemes need to be improved to correctly represent ocean surface mixing due to shear and convection, as well as waves, in OGCMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA